Notice (8): Undefined index: text [APP/View/Contents/product_details.ctp, line 63]Code Context
<div class="divider"></div>
<p><?php echo $product['Product']['text'.$pLang]?></p>
$viewFile = '/var/www/vhosts/armgate.lv/olnio.com/app/View/Contents/product_details.ctp'
$subs = array(
(int) 0 => array(
'Category' => array(
'id' => '64',
'type' => 'cat',
'parent_id' => '3',
'title_lat' => '',
'title_est' => null,
'sub_title_est' => null,
'content_est' => null,
'short_content_est' => null,
'slug' => 'Universal SDR systems',
'title_eng' => 'Universal SDR systems',
'image' => 'd9239453460516cc2a13bac4dd44d657.png',
'sub_title_lat' => '',
'sub_title_eng' => 'Universal SDR systems',
'content_lat' => '',
'content_eng' => '<h2>USRP - Universal SDR Devices</h2>
<p> USRP (Universal Software Radio Peripheral) is the generic name for Xilinx's line of high quality SDR open source FPGA devices.</p>
<p> USRPs are shipped as off-the-shelf NI USRP-29xx devices running LabVIEW for speedy system creation, and as separate components, motherboards, daughterboards, ruggedized cases, and more. for the most flexible assembly of devices and systems.</p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/512bd37e25556b0040ffec822749366e.jpeg" alt="" width="650" height="235" /></p>
<h2>Diversity of USRPs from NI and Ettus Research</h2>
<p> The compact low-cost B200 / B210 and NI 2900/2901 based on the RFIC AD9364 / AD9361 are USB-controlled and do not require a separate power supply.</p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/c8a950eb0d000fe3536dd555af4f5486.jpeg" alt="" width="300" height="218" /></p>
<p> The standalone USRP-2974 with Xilinx Kintex-7 and Intel Core-i7 running NI Linux RT enable UE prototyping for new communications networks and other tasks that require a combination of autonomy and mobility. </p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/48e19c96b5147691f3e384048d9cda6e.jpeg" alt="" width="300" height="160" /></p>
<p> Standalone N3xx with Xilinx Zynq and 10 Gigabit Ethernet are designed to create autonomous and distributed systems, including those with synchronization from GPS or White Rabbit.</p>
<p> The USRP-294x / 295x series models form the backbone of most multi-channel systems. In these models, the X310 motherboard provides Kintex-7 FPGAs and connectivity to the host computer via PCI Express and 10 Gigabit Ethernet, and the radio cards determine the radio path capabilities, device bandwidth and channel, phase synchronization capabilities using LO Sharing.</p>
<p> </p>
<h2>USRP-294x / 5x Series Appliances</h2>
<p> Most models contain two full duplex transceiver channels. Models USRP-2945/55 are 4-channel phase-locked receivers thanks to superheterodyne architecture and LO Sharing.</p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/e338aeffbca8a0dedea06b17f1ef1b7f.jpeg" alt="" width="494" height="307" /> <img class="img-responsive" src="http://www.olnio.com/uploads/service/ea4b2fac8fadd9ac40f1c4d49f536ee3.jpeg" alt="" width="572" height="356" /></p>
<p> The front panel of the USRP-294x / 5x series devices contains input-output lines: radio channel connectors and additional digital lines connected directly to the FPGA.</p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/395376e4c641e447fe1e749e25a43c4e.jpeg" alt="" width="860" height="362" /></p>
<p> The rear panel contains digital connectors for connecting to a PC or PXI via PCI Express and 10G / 1G Ethernet, as well as synchronization connectors: input and output of 10 MHz reference signals, trigger signals and PPS, GPS antenna connector.</p>
<p> On models supporting LO Sharing, the required connectors are also located on the rear panel.</p>
<p> </p>
<h2>USRP Synchronization with Octoclock-G CDA 2990</h2>
<p> An Octoclock block has been created to simplify USRP synchronization. It distributes 10 MHz and 1 PPS reference signals in star topology to 8 channels and also supports GPS referencing.</p>
<p><img class="attachment-large size-large" style="margin: 0px; padding: 0px; border: none #e2e2e2; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-stretch: inherit; font-size: 13px; line-height: inherit; font-family: 'Open Sans', Arial, Tahoma, sans-serif; vertical-align: middle; box-sizing: border-box; height: 215px; max-width: 100%; border-radius: 0px; box-shadow: none; display: inline-block; text-align: center;" src="https://izmeril.ru/wp-content/uploads/2020/05/MIMO-SDR-Brochure-11.jpg" sizes="(max-width: 990px) 100vw, 990px" srcset="https://izmeril.ru/wp-content/uploads/2020/05/MIMO-SDR-Brochure-11.jpg 990w, https://izmeril.ru/wp-content/uploads/2020/05/MIMO-SDR-Brochure-11-300x115.jpg 300w, https://izmeril.ru/wp-content/uploads/2020/05/MIMO-SDR-Brochure-11-768x295.jpg 768w, https://izmeril.ru/wp-content/uploads/2020/05/MIMO-SDR-Brochure-11-260x100.jpg 260w, https://izmeril.ru/wp-content/uploads/2020/05/MIMO-SDR-Brochure-11-50x19.jpg 50w, https://izmeril.ru/wp-content/uploads/2020/05/MIMO-SDR-Brochure-11-150x58.jpg 150w, https://izmeril.ru/wp-content/uploads/2020/05/MIMO-SDR-Brochure-11-600x230.jpg 600w" alt="" width="561" height="380" /></p>
<p> </p>
<p> </p>
<p> </p>',
'title_lit' => null,
'title_ukr' => null,
'sub_title_lit' => null,
'sub_title_ukr' => null,
'content_lit' => null,
'content_ukr' => null,
'service' => '',
'service_eng' => '',
'gallery' => '',
'gallery_eng' => '',
'use_cases' => false,
'disabled' => false,
'published' => true,
'ord' => '15',
'yerevan' => false,
'created' => '2021-01-20 21:58:39',
'modified' => '2021-04-07 20:03:57',
'short_content_lat' => null,
'short_content_eng' => '<p> USRP (Universal Software Radio Peripheral) is the generic name for Xilinx's line of high quality SDR open source FPGA devices.</p>',
'short_content_lit' => '',
'short_content_ukr' => '',
'featured' => false
)
),
(int) 1 => array(
'Category' => array(
'id' => '63',
'type' => 'cat',
'parent_id' => '3',
'title_lat' => '',
'title_est' => null,
'sub_title_est' => null,
'content_est' => null,
'short_content_est' => null,
'slug' => ' SDR low cost',
'title_eng' => ' SDR low cost',
'image' => '1c8f5f73897b34f2cf3da7c75d692dbd.png',
'sub_title_lat' => '',
'sub_title_eng' => ' SDR low cost',
'content_lat' => '',
'content_eng' => '<h4 data-id="6df3ec9" data-element_type="widget" data-widget_type="heading.default"><span style="font-size: 18pt;">Ettus USRP Series B200, B200mini</span></h4>
<div data-id="5c1bdfb" data-element_type="widget" data-widget_type="text-editor.default">
<p> The USRP B-Series (Bus Series) features cost- and weight-optimized 1- and 2-channel transceivers based on Analog Devices integrated radio chips, Xilinx Spartan-6 FPGAs and USB 3.0 bus for connection to an external computer.</p>
<p> The B200mini series is a miniature version of the B200 - in the size of a business card.</p>
<p><img class="attachment-large size-large" style="margin: 0px; padding: 0px; border: none; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-stretch: inherit; font-size: 13px; line-height: inherit; font-family: 'Open Sans', Arial, Tahoma, sans-serif; vertical-align: middle; box-sizing: border-box; height: 209px; max-width: 100%; border-radius: 0px; box-shadow: none; display: inline-block; text-align: center;" src="https://izmeril.ru/wp-content/uploads/2020/06/1-1024x270.jpg" sizes="(max-width: 1024px) 100vw, 1024px" srcset="https://izmeril.ru/wp-content/uploads/2020/06/1-1024x270.jpg 1024w, https://izmeril.ru/wp-content/uploads/2020/06/1-300x79.jpg 300w, https://izmeril.ru/wp-content/uploads/2020/06/1-768x202.jpg 768w, https://izmeril.ru/wp-content/uploads/2020/06/1-260x69.jpg 260w, https://izmeril.ru/wp-content/uploads/2020/06/1-50x13.jpg 50w, https://izmeril.ru/wp-content/uploads/2020/06/1-150x40.jpg 150w, https://izmeril.ru/wp-content/uploads/2020/06/1-600x158.jpg 600w, https://izmeril.ru/wp-content/uploads/2020/06/1.jpg 1332w" alt="" width="793" height="270" /></p>
<p> </p>
<p> Affordable, compact and lightweight, the B-Series is widely used in experiments and is easily portable to mobile systems.</p>
<p> All USRP models support the USRP Hardware Driver ™ (UHD), a cross-platform open source driver for Windows, Linux and MacOS, with a common API for GNU Radio, C ++ and Python. This makes it easy to transfer projects between USRP models of other series, scale solutions, integrate them into complex complexes.</p>
<div class="has_eae_slider elementor-column elementor-col-50 elementor-inner-column elementor-element elementor-element-9f22b6b" style="margin: 0px; padding: 0px; border: 0px; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-stretch: inherit; font-size: 13px; line-height: inherit; font-family: 'Open Sans', Arial, Tahoma, sans-serif; vertical-align: baseline; box-sizing: border-box; min-height: 1px; position: relative; display: flex; width: 543.703px;" data-id="9f22b6b" data-element_type="column">
<div class="elementor-column-wrap elementor-element-populated" style="margin: 0px; padding: 10px; border: 0px; font: inherit; vertical-align: baseline; box-sizing: border-box; position: relative; display: flex; width: 543.703px;">
<div class="elementor-widget-wrap" style="margin: 0px; padding: 0px; border: 0px; font: inherit; vertical-align: baseline; box-sizing: border-box; position: relative; width: 523.703px; flex-wrap: wrap; align-content: flex-start; display: flex;">
<div class="elementor-element elementor-element-cdd5227 elementor-widget elementor-widget-image" style="margin: 0px; padding: 0px; border: 0px; font: inherit; vertical-align: baseline; box-sizing: border-box; position: relative; text-align: center; width: 523.703px;" data-id="cdd5227" data-element_type="widget" data-widget_type="image.default">
<div class="elementor-widget-container" style="margin: 0px; padding: 0px; border: 0px; font: inherit; vertical-align: baseline; box-sizing: border-box; transition: background 0.3s ease 0s, border 0.3s ease 0s, border-radius 0.3s ease 0s, box-shadow 0.3s ease 0s, -webkit-border-radius 0.3s ease 0s, -webkit-box-shadow 0.3s ease 0s;">
<div class="elementor-image" style="margin: 0px; padding: 0px; border: 0px; font: inherit; vertical-align: baseline; box-sizing: border-box; text-align: left;"><img class="img-responsive" src="http://www.olnio.com/uploads/service/3bd345a891df8c92e684103d8371966e.jpeg" alt="" width="506" height="225" /> <img class="img-responsive" src="http://www.olnio.com/uploads/service/90f48381c3270004cd7530072e8aba81.jpeg" alt="" width="502" height="215" /></div>
</div>
</div>
</div>
</div>
</div>
<div class="has_eae_slider elementor-column elementor-col-50 elementor-inner-column elementor-element elementor-element-6a6d5ec" style="margin: 0px; padding: 0px; border: 0px; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-stretch: inherit; font-size: 13px; line-height: inherit; font-family: 'Open Sans', Arial, Tahoma, sans-serif; vertical-align: baseline; box-sizing: border-box; min-height: 1px; position: relative; display: flex; width: 543.703px;" data-id="6a6d5ec" data-element_type="column">
<div class="elementor-column-wrap elementor-element-populated" style="margin: 0px; padding: 10px; border: 0px; font: inherit; vertical-align: baseline; box-sizing: border-box; position: relative; display: flex; width: 543.703px;">
<div class="elementor-widget-wrap" style="margin: 0px; padding: 0px; border: 0px; font: inherit; vertical-align: baseline; box-sizing: border-box; position: relative; width: 523.703px; flex-wrap: wrap; align-content: flex-start; display: flex;">
<div class="elementor-element elementor-element-6f5a8a5 elementor-widget elementor-widget-image" style="margin: 0px; padding: 0px; border: 0px; font: inherit; vertical-align: baseline; box-sizing: border-box; position: relative; text-align: center; width: 523.703px;" data-id="6f5a8a5" data-element_type="widget" data-widget_type="image.default">
<div class="elementor-widget-container" style="margin: 0px; padding: 0px; border: 0px; font: inherit; vertical-align: baseline; box-sizing: border-box; transition: background 0.3s ease 0s, border 0.3s ease 0s, border-radius 0.3s ease 0s, box-shadow 0.3s ease 0s, -webkit-border-radius 0.3s ease 0s, -webkit-box-shadow 0.3s ease 0s;">
<div class="elementor-image" style="margin: 0px; padding: 0px; border: 0px; font: inherit; vertical-align: baseline; box-sizing: border-box;"> </div>
</div>
</div>
</div>
</div>
</div>
<p><img class="attachment-large size-large" style="margin: 0px; padding: 0px; border: none #e2e2e2; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-stretch: inherit; font-size: 13px; line-height: inherit; font-family: 'Open Sans', Arial, Tahoma, sans-serif; vertical-align: middle; box-sizing: border-box; height: 374px; max-width: 100%; border-radius: 0px; box-shadow: none; display: inline-block; text-align: center;" src="https://izmeril.ru/wp-content/uploads/2020/06/4-1024x484.jpg" sizes="(max-width: 1024px) 100vw, 1024px" srcset="https://izmeril.ru/wp-content/uploads/2020/06/4-1024x484.jpg 1024w, https://izmeril.ru/wp-content/uploads/2020/06/4-300x142.jpg 300w, https://izmeril.ru/wp-content/uploads/2020/06/4-768x363.jpg 768w, https://izmeril.ru/wp-content/uploads/2020/06/4-260x123.jpg 260w, https://izmeril.ru/wp-content/uploads/2020/06/4-50x24.jpg 50w, https://izmeril.ru/wp-content/uploads/2020/06/4-150x71.jpg 150w, https://izmeril.ru/wp-content/uploads/2020/06/4-600x283.jpg 600w, https://izmeril.ru/wp-content/uploads/2020/06/4.jpg 1084w" alt="" width="791" height="484" /></p>
<p><span style="font-size: 10pt;">Example of NI SDR equipment in different formats: USRP, ATCA, PXI, FlexRIO, mmWave TS</span></p>
<p> The NI platform is built on a unique integration of SDR architecture, measurement technology, and rapid development software.</p>
<p> </p>
</div>',
'title_lit' => null,
'title_ukr' => null,
'sub_title_lit' => null,
'sub_title_ukr' => null,
'content_lit' => null,
'content_ukr' => null,
'service' => '',
'service_eng' => '',
'gallery' => '',
'gallery_eng' => '',
'use_cases' => false,
'disabled' => false,
'published' => true,
'ord' => '16',
'yerevan' => false,
'created' => '2021-01-20 21:09:50',
'modified' => '2021-04-07 20:03:57',
'short_content_lat' => null,
'short_content_eng' => '<p>5G is the next generation mobile standard. True Internet of Things (IoT) and Autonomous Vehicles will become ...</p>',
'short_content_lit' => '',
'short_content_ukr' => '',
'featured' => false
)
),
(int) 2 => array(
'Category' => array(
'id' => '65',
'type' => 'cat',
'parent_id' => '3',
'title_lat' => '',
'title_est' => null,
'sub_title_est' => null,
'content_est' => null,
'short_content_est' => null,
'slug' => 'Autonomous SDR systems',
'title_eng' => 'Autonomous SDR systems',
'image' => '568267e6e410936beca72226df97c9ce.png',
'sub_title_lat' => '',
'sub_title_eng' => 'Autonomous SDR systems',
'content_lat' => '',
'content_eng' => '<h3><span style="font-size: 18pt;">Compact standalone SDRs</span></h3>
<p><span style="font-size: 14pt;">Ettus USRP E-Series, Mush Technologies MT0012</span></p>
<p> Compact standalone SDR devices such as the Ettus USRP E-Series (Embedded) and Mush Technologies MT0012 contain everything you need for autonomous operation. They are based on FPGAs and one or more processors as part of the Xilinx Zynq SoC, serve the tasks of monitoring air and electronic warfare, deploying base stations and microcells for mobile communications, etc.</p>
<p> The base model Ettus E310 uses a 2 × 2 MIMO AD9361 transceiver in the 70 MHz - 6 GHz range with a bandwidth of up to 56 MHz and a set of transmit and receive filters. E310 is equipped with a GPS receiver (including for time synchronization), microSD, 2 USB 2.0 ports.</p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/59d34f739708227d131707ae8ac2f07e.jpeg" alt="" width="801" height="318" /></p>
<p> Model E312 includes E310 functionality and Li-ion battery, E313 solution provides IP67 protection for E310.</p>
<p> The Ettus E320 provides 4x the FPGA and additional high-speed data transfer capabilities.</p>
<p> Mush Technologies MT0012 based on Xilinx Zynq UltraScale + and AD9371 provides 2x2 channels with 100 MHz bandwidth in the 300 MHz - 6 GHz range and is designed for heavy signal processing in 3G and 4G communication tasks.</p>
<p> Open-frame OEM versions are available.</p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/22ae097d23bf7916cd2c4569d4967071.jpeg" alt="" width="650" height="330" /></p>
<p> </p>
<p>Technical specifications</p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/5437bdf0557f74c06c5c7db86a6b5364.jpeg" alt="" width="650" height="432" /></p>
<p><span style="font-size: 14pt;">SDR for Distributed MIMO Systems</span></p>
<p><span style="font-size: 14pt;">Ettus USRP N300 Series</span></p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/7e4b0e2eca19a8d05f24ed4dd27f28c5.jpeg" alt="" width="650" height="219" /></p>
<p> USRP N3xx models offer increased reliability for tasks requiring the creation and support of large-scale distributed systems, including distributed monitoring of the air, communication networking, prototyping and deployment of RRH, eNB and UE, stands and systems for testing mobile communications, radar and electronic warfare technologies.</p>
<p> Standalone operation The N3xx relies on the Xilinx Zynq FPGA and ARM controller, as well as recent UHD driver updates to remotely control, update, debug, and monitor a large number of networked USRPs.</p>
<p style="text-align: center;"><img class="img-responsive" src="http://www.olnio.com/uploads/service/7c94cce6dd7d8456e96cd19d2b30cdef.jpeg" alt="" width="650" height="355" /></p>
<p> </p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/987536d0c8e82d8214a4f5dfdeac2f0f.jpeg" alt="" width="650" height="456" /></p>
<p><span style="font-size: 14pt;">Rapid prototyping of 5G communication systems</span></p>
<p><span style="font-size: 14pt;">NI USRP 2974</span></p>
<p> Based on the Xilinx Kintex-7 FPGA and Intel i7 processor, the NI USRP-2974 delivers the high performance you need to research and develop innovative next-generation mobile communications solutions.</p>
<p> The USRP-2974 has been designed for applications such as LTE and 802.11 device emulation, PHY and MAC layer algorithms, MIMO and Massive MIMO systems, Heterogeneous Networks, LTE Relaying, RF Compressive Sampling, Spectrum Sensing, cognitive radio, beamforming and signal source search. ...</p>
<p><img class="attachment-large size-large" style="margin: 0px; padding: 0px; border: none; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-stretch: inherit; font-size: 13px; line-height: inherit; font-family: 'Open Sans', Arial, Tahoma, sans-serif; vertical-align: middle; box-sizing: border-box; height: 277px; max-width: 100%; border-radius: 0px; box-shadow: none; display: inline-block; width: 419px; text-align: center;" src="https://izmeril.ru/wp-content/uploads/2020/06/7.jpg" sizes="(max-width: 755px) 100vw, 755px" srcset="https://izmeril.ru/wp-content/uploads/2020/06/7.jpg 755w, https://izmeril.ru/wp-content/uploads/2020/06/7-300x198.jpg 300w, https://izmeril.ru/wp-content/uploads/2020/06/7-221x146.jpg 221w, https://izmeril.ru/wp-content/uploads/2020/06/7-50x33.jpg 50w, https://izmeril.ru/wp-content/uploads/2020/06/7-113x75.jpg 113w, https://izmeril.ru/wp-content/uploads/2020/06/7-600x397.jpg 600w" alt="" width="755" height="499" /></p>
<p> </p>
<p>The USRP-2974 runs on NI Linux Real-Time, Linux Fedora or Linux Ubuntu Real-Time, and supports other operating systems including Windows 10. Full support for LabVIEW Communications System Design Suite and Application Frameworks, plus a number of examples of integration with projects such as ns -3 and OpenAirInterface accelerate research into 802.11, LTE and MIMO communications networks.</p>
<p>The model also supports sync and streaming over high-speed protocols including 10 Gigabit Ethernet, Aurora, and PCIe Gen2.</p>
<div class="has_eae_slider elementor-column elementor-col-50 elementor-inner-column elementor-element elementor-element-37ac6c7" style="margin: 0px; padding: 0px; border: 0px; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-stretch: inherit; font-size: 13px; line-height: inherit; font-family: 'Open Sans', Arial, Tahoma, sans-serif; vertical-align: baseline; box-sizing: border-box; min-height: 1px; position: relative; display: flex; width: 543.703px;" data-id="37ac6c7" data-element_type="column">
<div class="elementor-column-wrap elementor-element-populated" style="margin: 0px; padding: 10px; border: 0px; font: inherit; vertical-align: baseline; box-sizing: border-box; position: relative; display: flex; width: 543.703px;">
<div class="elementor-widget-wrap" style="margin: 0px; padding: 0px; border: 0px; font: inherit; vertical-align: baseline; box-sizing: border-box; position: relative; width: 523.703px; flex-wrap: wrap; align-content: flex-start; display: flex;">
<div class="elementor-element elementor-element-8108a19 elementor-widget elementor-widget-image" style="margin: 0px; padding: 0px; border: 0px; font: inherit; vertical-align: baseline; box-sizing: border-box; position: relative; text-align: center; width: 523.703px;" data-id="8108a19" data-element_type="widget" data-widget_type="image.default">
<div class="elementor-widget-container" style="margin: 0px; padding: 0px; border: 0px; font: inherit; vertical-align: baseline; box-sizing: border-box; transition: background 0.3s ease 0s, border 0.3s ease 0s, border-radius 0.3s ease 0s, box-shadow 0.3s ease 0s, -webkit-border-radius 0.3s ease 0s, -webkit-box-shadow 0.3s ease 0s;">
<div class="elementor-image" style="margin: 0px; padding: 0px; border: 0px; font: inherit; vertical-align: baseline; box-sizing: border-box;"><img class="img-responsive" src="http://www.olnio.com/uploads/service/8dc8dd41f6fbebcab916dab4744e2a2c.jpeg" alt="" width="489" height="393" /></div>
</div>
</div>
</div>
</div>
</div>
<div class="has_eae_slider elementor-column elementor-col-50 elementor-inner-column elementor-element elementor-element-c17f157" style="margin: 0px; padding: 0px; border: 0px; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-stretch: inherit; font-size: 13px; line-height: inherit; font-family: 'Open Sans', Arial, Tahoma, sans-serif; vertical-align: baseline; box-sizing: border-box; min-height: 1px; position: relative; display: flex; width: 543.703px;" data-id="c17f157" data-element_type="column">
<div class="elementor-column-wrap elementor-element-populated" style="margin: 0px; padding: 10px; border: 0px; font: inherit; vertical-align: baseline; box-sizing: border-box; position: relative; display: flex; width: 543.703px;">
<div class="elementor-widget-wrap" style="margin: 0px; padding: 0px; border: 0px; font: inherit; vertical-align: baseline; box-sizing: border-box; position: relative; width: 523.703px; flex-wrap: wrap; align-content: flex-start; display: flex;">
<div class="elementor-element elementor-element-8fc6db0 elementor-widget elementor-widget-image" style="margin: 0px; padding: 0px; border: 0px; font: inherit; vertical-align: baseline; box-sizing: border-box; position: relative; text-align: center; width: 523.703px;" data-id="8fc6db0" data-element_type="widget" data-widget_type="image.default">
<div class="elementor-widget-container" style="margin: 0px; padding: 0px; border: 0px; font: inherit; vertical-align: baseline; box-sizing: border-box; transition: background 0.3s ease 0s, border 0.3s ease 0s, border-radius 0.3s ease 0s, box-shadow 0.3s ease 0s, -webkit-border-radius 0.3s ease 0s, -webkit-box-shadow 0.3s ease 0s;">
<div class="elementor-image" style="margin: 0px; padding: 0px; border: 0px; font: inherit; vertical-align: baseline; box-sizing: border-box;"><img class="img-responsive" src="http://www.olnio.com/uploads/service/2ac584424defa33076ef8f1e6ec7ea3a.jpeg" alt="" width="490" height="350" /></div>
</div>
</div>
</div>
</div>
</div>',
'title_lit' => null,
'title_ukr' => null,
'sub_title_lit' => null,
'sub_title_ukr' => null,
'content_lit' => null,
'content_ukr' => null,
'service' => '',
'service_eng' => '',
'gallery' => '',
'gallery_eng' => '',
'use_cases' => false,
'disabled' => false,
'published' => true,
'ord' => '17',
'yerevan' => false,
'created' => '2021-01-23 08:14:46',
'modified' => '2021-04-07 20:03:57',
'short_content_lat' => null,
'short_content_eng' => '<p>Autonomous SDR systems</p>',
'short_content_lit' => '',
'short_content_ukr' => '',
'featured' => false
)
),
(int) 3 => array(
'Category' => array(
'id' => '66',
'type' => 'cat',
'parent_id' => '3',
'title_lat' => '',
'title_est' => null,
'sub_title_est' => null,
'content_est' => null,
'short_content_est' => null,
'slug' => 'Multichannel SDR systems',
'title_eng' => 'Multichannel SDR systems',
'image' => '5f15547d1219b6647280d591a2305219.png',
'sub_title_lat' => '',
'sub_title_eng' => 'Multichannel SDR systems',
'content_lat' => '',
'content_eng' => '<p><span class="boldspan" style="font-size: 14pt; font-weight: 400;">Multichannel SDR systems</span></p>
<p><span class="boldspan" style="font-size: 14pt; font-weight: 400;">SDR systems for any task</span></p>
<p> The ideology of NI for SDR is to develop a platform that allows you to solve problems from simple experiments to creating large-scale simulators of the interaction of hundreds of devices or precision testing systems for AFAR modules.</p>
<p><img class="img-responsive" style="display: block; margin-left: auto; margin-right: auto;" src="http://www.olnio.com/uploads/service/edfbc46a6837739c5d466b5fd2ef7ca8.jpeg" alt="" width="650" height="196" /></p>
<p style="text-align: center;"><span style="font-size: 10pt;">Example of NI SDR equipment in different formats: USRP, ATCA, PXI, FlexRIO, mmWave TS</span></p>
<p> The NI platform is built on a unique integration of SDR architecture, measurement technology, and rapid development software.</p>
<p> </p>
<p><span style="font-size: 14pt;">Recording and playback of wideband signals</span></p>
<p> The ability to record the entire signal, and then process or play it, simplifies many tasks. However, this imposes additional requirements.</p>
<p> So, already for signals with a bandwidth of 50 MHz over 4 channels, it is required to provide a bandwidth of 1 GB / s.</p>
<p> The NI platform provides tens of GB / s throughput throughout the signal path - in SDR devices, data bus, file storage, processor.</p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/d517d5562c6e31aed34825f32d16b031.jpeg" alt="" width="400" height="250" /></p>
<p> </p>
<p><span style="font-size: 14pt;">Practicing Massive MIMO Algorithms</span></p>
<p> When it comes to hundreds of channels, it is very important to be able to rely not only on the model, but also on real signals in real conditions.</p>
<p> NI's Massive MIMO Prototyping Systems help advanced researchers validate simulations and conduct field trials.</p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/d9e0a1e289c63350a7c18f3e16c908d1.jpeg" alt="" width="400" height="228" /></p>
<p><span style="font-size: 10pt;">Southeast University Massive MIMO Demo Booth</span></p>
<p> </p>
<p><span style="font-size: 14pt;">Phase-coherent channels, digital beamforming AFAR</span></p>
<p> Applications such as digital beamforming require phase-locked channels and fast signal processing for both R&D and product testing.</p>
<p> NI FlexRIO modules enable you to create flexible, compact system prototypes and test benches.</p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/4d8e90d0c54106234f2f9055ce617d4f.jpeg" alt="" width="550" height="250" /></p>
<p><span style="font-size: 10pt;">CAR digital antenna arrays improve AFAR performance</span></p>
<p> </p>
<p><span style="font-size: 14pt;">Imitation of a radio channel, environment, targets. Fast signal processing in real time.</span></p>
<p> Simulators of radio systems and their environment, including simulators of a channel for communication systems, targets for radars, and surrounding systems, must have time to receive signals, process them and generate a response in strictly specified time intervals.</p>
<p> The required processing speed and the amount of delay are implemented in high-speed FPGAs located as close as possible to the input-output of the radio signal</p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/2d67836c95e9f1b04fad3f6833ac9688.jpeg" alt="" width="400" height="293" /></p>
<p><span style="font-size: 14pt;">Synchronizing SDR Systems with PXI</span></p>
<p> Most NI SDR devices allow unlimited channel expansion without clock degradation:</p>
<p> • ADC / DAC synchronization based on common Reference Clock and PLL</p>
<p> • Common LO Sharing signals for phase matching</p>
<p> • Distributed system synchronization using Ethernet and GPS</p>
<p> </p>
<p><span class="boldspan" style="font-size: 12pt; font-weight: 400;">Onboard PXI lines and timing modules</span></p>
<p> <img class="img-responsive" style="float: left;" src="http://www.olnio.com/uploads/service/7718d0a6909181de74889077bfce8218.jpeg" alt="" width="260" height="107" /> PXI Express chassis and dedicated clock and clock modules provide comprehensive ADC / DAC synchronization capabilities for multichannel systems:</p>
<p> • Common 10 MHz and 100 MHz references</p>
<p> • Trigger and clock bus for signal exchange</p>
<p> • Dedicated Star Trigger Bus and D-Star Trigger Bus for strictly simultaneous delivery of signals from a clock module to other modules</p>
<p> • Clock from GPS signals, IEEE-1588</p>
<p> </p>
<p><span class="boldspan" style="font-size: 12pt; font-weight: 400;">Synchronization with GPS, IEEE-1588</span></p>
<p><img class="img-responsive" style="float: left;" src="http://www.olnio.com/uploads/service/0f34dbc42eebeb46b27eec20f0accffa.jpeg" alt="" width="260" height="192" /> For distributed systems that cannot be linked by common clock signals, time synchronization technologies using GPS and Ethernet are used.</p>
<p> PXI uses clock and system clocks such as the PXI-6682H and PXIe-6674T. Some USRP models also support these and other types of time synchronization.</p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p><span style="font-size: 12pt;">Software</span></p>
<p> NI helps accelerate system development with flexible software in varying degrees of availability — from the LabVIEW graphical programming environment and custom packages to turnkey applications and integration services.</p>
<p> <span class="boldspan" style="font-weight: 400;">LabVIEW</span> is a graphical measurement and test system development environment for engineers and scientists. Collection, processing, visualization of data, synchronization, FPGA - all in a single intuitive environment with many ready-made programs and examples that often do not require programming.</p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/c4b92cf9aa40dbb48ef1d33f87ded5c0.jpeg" alt="" width="650" height="328" /></p>
<p> </p>
<p> Application Frameworks are special packages in LabVIEW for innovations in communication systems based on Massive MIMO, 802.11, LTE. This is a ready-made application software and projects open for changes at any level, up to control of ADC / DAC and signal processing on FPGAs.</p>
<p> PCAG Toolkit is a solution for managing multichannel systems of vector analyzers and generators as a single multichannel device.</p>
<p> Integration packages with software products MathWorks, Xilinx Vivado, open source solutions for combining the most suitable tools.</p>',
'title_lit' => null,
'title_ukr' => null,
'sub_title_lit' => null,
'sub_title_ukr' => null,
'content_lit' => null,
'content_ukr' => null,
'service' => '',
'service_eng' => '',
'gallery' => '',
'gallery_eng' => '',
'use_cases' => false,
'disabled' => false,
'published' => true,
'ord' => '18',
'yerevan' => false,
'created' => '2021-01-23 19:49:20',
'modified' => '2021-04-07 20:03:57',
'short_content_lat' => null,
'short_content_eng' => '<p>Multichannel SDR systems</p>',
'short_content_lit' => '',
'short_content_ukr' => '',
'featured' => false
)
),
(int) 4 => array(
'Category' => array(
'id' => '67',
'type' => 'prod',
'parent_id' => '3',
'title_lat' => '',
'title_est' => null,
'sub_title_est' => null,
'content_est' => null,
'short_content_est' => null,
'slug' => 'Basic Hardware & Software configurations multi sdr',
'title_eng' => 'Basic Hardware & Software configurations ',
'image' => 'd8a046060aa08dc3725b1668d91417fd.png',
'sub_title_lat' => '',
'sub_title_eng' => 'Basic Hardware & Software configurations',
'content_lat' => '',
'content_eng' => '<p>Multichannel SDR systems devices</p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/0986cb4ee4c481ba550cc10621f62390.jpeg" alt="" width="650" height="714" /></p>',
'title_lit' => null,
'title_ukr' => null,
'sub_title_lit' => null,
'sub_title_ukr' => null,
'content_lit' => null,
'content_ukr' => null,
'service' => '',
'service_eng' => '',
'gallery' => '',
'gallery_eng' => '',
'use_cases' => false,
'disabled' => false,
'published' => true,
'ord' => '19',
'yerevan' => false,
'created' => '2021-01-23 19:56:53',
'modified' => '2021-04-07 20:03:57',
'short_content_lat' => null,
'short_content_eng' => '<p>Multichannel SDR systems devices</p>
<p> </p>',
'short_content_lit' => '',
'short_content_ukr' => '',
'featured' => false
)
),
(int) 5 => array(
'Category' => array(
'id' => '68',
'type' => 'sol',
'parent_id' => '3',
'title_lat' => '',
'title_est' => null,
'sub_title_est' => null,
'content_est' => null,
'short_content_est' => null,
'slug' => 'Solution examples Massive MIMO with USRP',
'title_eng' => 'Solution examples',
'image' => '23d2256bc84ffda2681fc7d835550ba7.png',
'sub_title_lat' => '',
'sub_title_eng' => 'Solution examples',
'content_lat' => '',
'content_eng' => '<p> </p>
<h2 class="elementor-heading-title elementor-size-default" style="margin: 0px; padding: 0px; border: 0px; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-weight: var( --e-global-typography-primary-font-weight ); font-stretch: inherit; font-size: 30px; line-height: 1; font-family: var( --e-global-typography-primary-font-family ), Sans-serif; vertical-align: baseline; box-sizing: border-box;"><span style="box-sizing: border-box; vertical-align: inherit;">Massive MIMO with USRP</span></h2>
<p> Massive MIMO is a technology for increasing the spectral transmission efficiency of mobile communications in urban environments using hundreds of antennas. Massive MIMO researchers appreciate the ability to experimentally test algorithms early - in real-world settings and with real-world signals.</p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/1fe39d556b26970855a44995080e517a.jpeg" alt="" width="700" height="208" /></p>
<p>Example of NI SDR equipment in different formats: USRP, ATCA, PXI, FlexRIO, mmWave TS</p>
<p> </p>
<p><span style="font-size: 12pt;">System equipment</span></p>
<p>• Transceivers: USRP-294x</p>
<p>• Data transmission: PXIe-1085 chassis, PCI SwitchBox</p>
<p>• Signal processing: FPGA in USRP and FlexRIO, PXIe-8880 controller</p>
<p>• Synchronization: PXIe-6674T, Octoclock CDA-2990</p>
<p> </p>
<p><span style="font-size: 12pt;">MIMO Application Framework</span></p>
<p>• Ready open project LabVIEW</p>
<p>• For base station and subscriber devices</p>
<p>• SU-MIMO, MU-MIMO, Massive MIMO</p>
<p>• MIMO encoding</p>
<p>• Advanced Reciprocity Calibration</p>
<p>• Real-time measurements</p>
<p> </p>
<p><span style="font-size: 12pt;">Early adopters of NI Massive MIMO</span></p>
<p>University of Bristol, Lund University, British Telecom, Facebook, Samsung, Nokia,</p>
<p>Intel, KU Leuven, MIET.</p>
<p> </p>
<p><em><span style="font-size: 24pt;"><span class="boldspan" style="font-weight: 400;">Record 145 bps / Hz spectral efficiency</span></span></em></p>
<p>Objective: To create a prototype system to achieve a 20x increase in spectrum utilization using Massive MIMO.</p>
<p>Solution: Experimental stand NI MIMO Prototyping System for 128 antennas: 64 USRP running software on LabVIEW for PC and FPGA. Collaboration between the University of Bristol, Lund University and NI. </p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/1936867c13d42b8359b58c6466c7f028.jpeg" alt="" width="400" height="249" /></p>
<p><em>"The</em></p>
<p><em>NI MIMO Prototyping System Integrated HW Platform with MIMO</em></p>
<p><em>Application Framework took a lot of the complexity out of</em></p>
<p><em>this development."</em></p>
<p><em>Paul Harris, CSN Group, Unversity of Bristol</em></p>
<p>_____________________________________________________</p>
<p> </p>
<h2 class="elementor-heading-title elementor-size-default" style="margin: 0px; padding: 0px; border: 0px; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-weight: var( --e-global-typography-primary-font-weight ); font-stretch: inherit; font-size: 30px; line-height: 1; font-family: var( --e-global-typography-primary-font-family ), Sans-serif; vertical-align: baseline; box-sizing: border-box;"><span style="box-sizing: border-box; vertical-align: inherit;">Simulation of the radio environment in real time</span></h2>
<p> Hardware and software modeling of radio systems is used both at the R&D stages and for testing systems. Continuous digital signal processing with low latency is required to ensure correct simulation.</p>
<p> </p>
<h4><span style="font-size: 18pt;"><em>Colosseum - the largest radio channel simulator</em></span></h4>
<p><span class="boldspan" style="font-weight: 400;">Objective: </span> To create a platform for debugging algorithms and holding competitions for SDR + AI teams on shared spectrum use as part of the DARPA Spectrum Collaboration Challenge. Provide mesh connectivity of all 256 channels with 52 TB / s data in real time.</p>
<p><span class="boldspan" style="font-weight: 400;">Solution: </span> RF simulator on 128 USRP devices and 8 ATCA-3671 handlers. Synchronization with Octoclock CDA-2990. Scenario control and real-time visualization.</p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/269b4657a5896661c8e006d0685b205c.jpeg" alt="" width="450" height="389" /></p>
<p>One of the legs of the simulator. Source: Report of GosNIIAS, MAKS-2017</p>
<p> </p>
<p><em>“Designing a system of this scale from scratch</em></p>
<p><em>would take years. The alternatives to using</em></p>
<p><em>commercial SDRs from NI carried too much</em></p>
<p><em>risk and cost. ”</em></p>
<p><em>Paul Tilgman, Program Manager,</em></p>
<p><em>DARPA Spectrum Collaboration</em></p>
<p> </p>
<h3><span class="boldspan" style="font-size: 18pt; font-weight: 400;"><em>Simulation of TCAS as part of the aircraft radio environment</em></span></h3>
<p><span class="boldspan" style="font-weight: 400;">Objective: </span> Simulate ambient traffic during a simulated flight. Formation of a response signal in real time. Simulation of the distance to the aircraft (3 μs non-response), bearing (4 copies of the response signal), overlapping responses of up to 4 aircraft.</p>
<p><span class="boldspan" style="font-weight: 400;">Solution:</span> Using 4 FlexRIO 5971 transceivers in a MIMO configuration with a common LO, generating and summing responses to FPGAs in real time.</p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/12d99dca7294f668c548360acb6f96cb.jpeg" alt="" width="414" height="566" /></p>
<p><em>“This simulator is just one of a large simulator of all aircraft radio systems. We created a simulated airplane radio environment to incorporate real radio systems, previously replaced by mathematical models, into the ground test process.</em></p>
<p><em>FlexRIO allows us to elegantly solve the assigned tasks within the booth. ”</em></p>
<p><em>Lead Project Engineer</em></p>
<p> </p>
<h3><span style="font-size: 18pt;"><em><span class="boldspan" style="font-weight: 400;">Air control for UAVs</span></em></span></h3>
<p><span class="boldspan" style="font-weight: 400;">Task:</span> Detection and interception of downlink and uplink signals of commercial drones, monitoring their activity, jamming and intercepting control over the radio channel.</p>
<p><span class="boldspan" style="font-weight: 400;">Solution:</span> Air monitoring for drones encompasses a wide range of tasks performed by SDR transceivers in a number of private companies and government organizations. Signal detection and interception of GPS coordinates from the downlink channel allows you to see the movements of the vehicles, the substitution of navigation signals together with jamming of the control channel is used to control the flight and to land in the desired place. Full interception of uplink signals allows full control of the device.</p>
<p>SkySafe uses USRP X310 for automotive anti-drone electronic warfare systems.</p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/988e17b728d82dc20a3de61321180021.jpeg" alt="" width="450" height="292" /></p>
<p><em>"The USRP X310 is the only commercially available SDR with sufficient radio and digital processing capabilities to meet the growing demands of countering drone threats."</em></p>
<p><em>Scott Torbor, SkySafe CTO</em></p>
<p> </p>
<h3><span style="font-size: 18pt;"><em><span class="boldspan" style="font-weight: 400;">Spatially adaptive television broadcasting: analysis in the hardware-software cycle.</span></em></span></h3>
<p>Broadcast antennas are installed based on several planning assumptions that never fully reflect reality. The network is being over-designed, and energy efficiency is decreasing. DVB-T amplifiers are inherently inefficient, exacerbating the problem.</p>
<p><span class="boldspan" style="font-weight: 400;">Challenge:</span> Optimize digital network performance by adapting real-time coverage based on user feedback using beamforming techniques</p>
<p><span class="boldspan" style="font-weight: 400;">Solution:</span> UE with an Internet connection will transmit the desired quality of service (QoS) metrics to a central controller. Based on this feedback data, broadcast powers and radiation patterns can be altered to optimize the energy efficiency of the broadcast network. This system is designed in such a way as not to require every user in any given area to be able to feed back to the data, limiting infrastructure overhead.</p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/64821ed7d483d054f1cb7f20f1251953.jpeg" alt="" width="450" height="266" /> <img class="img-responsive" src="http://www.olnio.com/uploads/service/1e392018d9afb41089c44177a5867e5b.jpeg" alt="" width="450" height="271" /></p>
<p>Live TV signal analysis</p>
<p>- Recording the power of the broadcast TV signal in band for 72 hours, using NI-USRP 2920</p>
<p>- Intensity plots and spectrum measurement in LabVIEW</p>
<p>- Allowed to estimate power fluctuations over time and then simulate them in a channel emulator for HIL experiments</p>
<p><em><span class="boldspan" style="font-weight: 400;">Predicted UK DTT Network Energy Savings</span></em></p>
<p><em>- This study has shown that an adaptive system can reduce the ERP of a broadcast tower by 20-35%</em></p>
<p><em>- Applying an ERP reduction estimate for the 49 largest UK broadcast stations gives the annual network savings shown in the table</em></p>
<p><em>- This is indicates a significant reduction in the UK network's carbon footprint and will result in significant cost savings</em></p>
<p> </p>
<h3><em><span class="boldspan" style="font-size: 18pt; font-weight: 400;">ULLA-X: Middleware for large-scale and distributed wireless experiments.</span></em></h3>
<p> </p>
<p><span class="boldspan" style="font-weight: 400;">Challenge:</span> Researching wireless systems, in particular, often requires extensive reconfiguration capabilities, but is hampered by disparate controls and domain-specific control tools.</p>
<p><span class="boldspan" style="font-weight: 400;">Solution</span>: ULLA-X seamlessly integrates into the NI ecosystem through LabVIEW connectors for the NPSV subsystem.</p>
<p>Controls for new and existing project templates are readily available through the LabVIEW exposition. This enables rapid prototyping using custom radio project templates.</p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/513b05845b91bf904f15b845fcd1ab11.jpeg" alt="" width="450" height="351" /></p>
<p><em>The ULLA-X core interacts with user applications using a standard network protocol. It schedules monitoring tasks, collects device statistics, and responds to changes in state based on trigger events.</em></p>
<p><em>The kernel connects to different radio systems through specific modules for each manufacturer, which translate the read and write expressions into the appropriate query or configuration commands. Simple description and configuration files are used to integrate the specifics of the reference design.</em></p>
<p><em>ULLA-X offers advanced control capabilities such as automatic detection and distributed control schemes.</em></p>
<p> </p>
<p><em>Institute for Networked Systems RWTH Aachen University, Germany</em></p>
<p> </p>
<h3><span style="font-size: 18pt;"><em><span class="boldspan" style="font-weight: 400;">Car frontal radar based on IEEE 802.11.</span></em></span></h3>
<p><span class="boldspan" style="font-weight: 400;">Challenge:</span> NTSB requires frontal collision detection and avoidance on all new vehicles.</p>
<p>MmWave radars are expensive, easy to trick, and not tied to a communications network.</p>
<p> </p>
<p><span class="boldspan" style="font-weight: 400;">Solution:</span> NI Hardware: USRP RIO (2953R)</p>
<p>NI Software: LabVIEW FPGA 2014</p>
<p> </p>
<p>IEEE 802.11 devices are widely available and are IEEE 802.11p compliant. Possible implementation with a narrow bandwidth requirement: 20 MHz in the 5 GHz range. Demonstrated the accuracy of the order of a meter at a distance of up to 50 m in a simulated environment.</p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/7f100ba2ae11b5e4691c66f4a5267936.jpeg" alt="" width="250" height="347" /></p>
<p>Measurement set for IEEE 802.11 RadCom communication: during the measurements, the edges of the antenna were separated by at least 0.5 m.</p>
<p> </p>
<p><em>This research was supported in part by the US Department of Transportation through the Data-Supported Transportation Operations and Planning (D-STOP) Tier 1 University Transportation Center and the Texas Department of Transportation under Project 0-6877 “Communications and Radar-Supported Transportation Operations and Planning (CAR-STOP ) ”. Dr. Daniels also works for Kuma Signals, LLC.</em></p>
<p> </p>
<p><em>Wireless Networking and Communications Group</em></p>
<p><em>University of Texas at Austin</em></p>
<p> </p>
<h3><span style="font-size: 18pt;"><em><span class="boldspan" style="font-weight: 400;">Diversity and coexistence in communication for the Smart Grid.</span></em></span></h3>
<p><span class="boldspan" style="font-weight: 400;">Objective:</span> Improving the reliability of smart grid communication.</p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/db5369d1026537253023c4a82206b28e.jpeg" alt="" width="400" height="177" /></p>
<p>Goal: Integrate smart grid clients</p>
<p>- Scale voltage to energy consumption</p>
<p>- Real-time billing at rates</p>
<p>- Analyze load profiles</p>
<p>- Increase system reliability</p>
<p> </p>
<p> </p>
<p><span class="boldspan" style="font-weight: 400;">Implementation of the project</span></p>
<p> </p>
<p>Wireless / Power</p>
<p>Line Heterogeneity - Non-identical Channel, Noise and Interference Statistics</p>
<p>- Combination Factor Maximization is the best method for maximizing the likelihood for additive Gaussian noise.</p>
<p>- OFDM transmission with 256 subchannels and BPSK modulation</p>
<p>- Sampling rate 0.4 MHz</p>
<p>- Wireless noise model: Gaussian mixture with two components</p>
<p>- Transmission line noise model: cyclostationary noise</p>
<p> </p>
<p>Coexistence mechanisms</p>
<p>- 802.11ah and 802.15.4g share the same 900 MHz ISM band - Large outdoor</p>
<p>channel loss model used - The</p>
<p>following interference model is used: d (Rxv, Txv) = dD and d (Rxi, Txi) = dU</p>
<p>- Used metric desired / unwanted signal ratio</p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/05cd3e7d40060d60d3506c93fc0e8d26.jpeg" alt="" width="450" height="239" /></p>
<p><em><span class="boldspan" style="font-weight: 400;">Test stand: </span></em></p>
<p><em>- Test bench of real-time hardware and software for wired MIMO OFDM communications</em></p>
<p><em>- Evaluated algorithms: bit allocation, time equalization, farend crosstalk cancellation (zero-forcing and successive interference)</em></p>
<p> </p>
<p> </p>
<h3><span style="font-size: 18pt;"><em><span class="boldspan" style="font-weight: 400;">Flexible implementation of GFDM on FPGAs with support for runtime reconfiguration</span></em></span></h3>
<p>Innovative 5G applications are challenging future cellular systems with new requirements. The OFDM 4G standard cannot cover all of them. Generalized frequency division multiplexing provides flexible waveforms with multiple carriers and additional degrees of freedom. This project presents a flexible FPGA implementation strategy for GFDM, with runtime reconfiguration, using the LabVIEW Communications System Design Suite.</p>
<p> </p>
<p><span class="boldspan" style="font-weight: 400;"><em>Results</em></span></p>
<p><em>- Flexible design in FPGA</em></p>
<p><em>- Parameters tunable at runtime:</em></p>
<p><em>- Number of subcarriers K</em></p>
<p><em>- Number of subsymbols M</em></p>
<p><em>- Pulse shaping filter</em></p>
<p><em>- Time window</em></p>
<p><em>- Cyclic prefix</em></p>
<p><em>- Resource map</em></p>
<p><em>- Training sequence</em></p>
<p> </p>
<p> </p>
<h3><span style="font-size: 18pt;"><em><span class="boldspan" style="font-weight: 400;">Architecture of broadband distributed shared spectrum systems based on LTE</span></em></span></h3>
<p>Objective: To develop a radio architecture for distributed spectrum sharing by secondary users (SUs) in a localized area and wide band.</p>
<p>Solution: The architecture based on the OFDM physical layer allows multiple pairs of users to use one or more sub-channels in-band without causing harmful interference to each other. The architecture is implemented using NI USRP RIO devices and the LabVIEW Communications System Design Suite.</p>
<p> </p>
<p><em>Tests in the LTE Application Framework System show that the spectrum sharing efficiency in the implemented distributed system is close to the upper bound at a sufficiently high signal-to-noise ratio.</em></p>
<p><em>- The efficiency of spectrum sensing increases with increasing N</em></p>
<p><em>- System performance is higher at N≥M</em></p>
<p><em>University of Notre Dame</em></p>
<p> </p>
<p> </p>
<h3><span style="font-size: 18pt;"><em><span class="boldspan" style="font-weight: 400;">TOUCAN Wireless SDN Test Bench: Multi-Technology Platform</span></em></span></h3>
<p><span class="boldspan" style="font-weight: 400;">A task: </span></p>
<p> </p>
<p>- Achieve maximum network convergence provided by a radically new technology-agnostic architecture for a wide range of end-user applications and services</p>
<p>- Promote optimal interconnection of network technology domains, network devices and datasets with high flexibility, bandwidth, high adaptability, resource and energy efficiency</p>
<p>- Overcome traditional barriers between equipment and service infrastructure by integrating and managing network infrastructure into an end-to-end service chain</p>
<p>- Seamlessly converging disparate technology domains</p>
<p>- Maintain very high throughput, granularity and capacity</p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/0508499a7211aeb7f51c10db14541706.jpeg" alt="" width="450" height="227" /></p>
<p><span class="boldspan" style="font-weight: 400;"><em>Solution: TOUCAN Wireless SDN Test Bench</em></span></p>
<p><em>- Part of the TOUCAN LAB, a unique large-scale experimental multi-technology platform designed to test, refine and demonstrate new solutions developed within the TOUCAN tasks</em></p>
<p><em>- An experimental platform that combines wireless and optical communication with IT, integrating them both on hardware and software level</em></p>
<p><em>- A multi-technology emulation tool capable of supporting various TOUCAN technologies in scale and in real time</em></p>
<p><em>- An experimental platform open to experimentation in all layers and fields, offering researchers complete control and programmability to create a multifunctional unique research Wednesday</em></p>
<p> </p>
<p><em>Communication Systems and Networks Group, University of Bristol</em></p>
<p> </p>
<p> </p>
<h3><span style="font-size: 18pt;"><em><span class="boldspan" style="font-weight: 400;">Non-contact breath detection with passive radar</span></em></span></h3>
<p><span class="boldspan" style="font-weight: 400;">Applications:</span></p>
<p>- Non-contact breathing detection is essential in critical care monitoring, long-term monitoring, as well as in other non-clinical areas such as monitoring the health of workers (airplane pilots, firefighters, etc.)</p>
<p>- Passive radar allows the detection system to work without special devices and without signal sources</p>
<p><span class="boldspan" style="font-weight: 400;">Solution:</span> Model of a passive radar system.</p>
<p>- Source - Energy</p>
<p>Harvesting Transmitter - Receiver - Data received from two USRP-2921 devices</p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/1ec8899f72425dd9881ffc7445574fe8.jpeg" alt="" width="416" height="200" /></p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/f41b470c11581e3b18054bcb10928892.jpeg" alt="" width="450" height="260" /></p>
<p><em>The proposed breathing detection system provides a high correlation of the respiratory signal up to 60 cm and the correct respiratory rate up to 100 cm.</em></p>
<p><em>The proposed system operates in real time with a speed of 5 readings per second.</em></p>
<p><em>Communication Systems and Networks Group, University of Bristol</em></p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>',
'title_lit' => null,
'title_ukr' => null,
'sub_title_lit' => null,
'sub_title_ukr' => null,
'content_lit' => null,
'content_ukr' => null,
'service' => '',
'service_eng' => '',
'gallery' => '',
'gallery_eng' => '',
'use_cases' => false,
'disabled' => false,
'published' => true,
'ord' => '20',
'yerevan' => false,
'created' => '2021-01-23 20:17:42',
'modified' => '2021-04-07 20:03:57',
'short_content_lat' => null,
'short_content_eng' => '',
'short_content_lit' => '',
'short_content_ukr' => '',
'featured' => false
)
),
(int) 6 => array(
'Category' => array(
'id' => '69',
'type' => 'cat',
'parent_id' => '3',
'title_lat' => '',
'title_est' => null,
'sub_title_est' => null,
'content_est' => null,
'short_content_est' => null,
'slug' => 'Microwave generators',
'title_eng' => 'Microwave generators',
'image' => 'df63645429444b18dec0728a8ddf76fa.png',
'sub_title_lat' => '',
'sub_title_eng' => 'Microwave generators',
'content_lat' => '',
'content_eng' => '<p> At the heart of the National Instruments microwave platform is a passion for innovation and truly efficient systems, leveraging advances in instrumentation, computing, open source software, and related industries to find new, efficient ways to solve problems. Thus, the graphical development of systems using LabVIEW and the active use of FPGAs to accelerate and expand the capabilities of radio electronic equipment allows us to produce such revolutionary solutions as the NI VST vector transceiver, a testing system for ultra-multichannel radio systems and a fifth-generation communication prototyping and prototyping system.</p>
<p> The versatility of the National Instruments hardware and software platform helps engineers and scientists around the world to solve the most complex problems of our time in various branches of science and technology. On the other hand, National Instruments uses knowledge and experience from various industries to create more efficient solutions in each of them.</p>
<p> Today National Instruments is a recognized leader in innovation in microwave instrumentation, development and prototyping of radio systems of the future, testing of modern electronic components and solving complex electronic problems.</p>
<p> </p>
<p>One platform, many standards</p>
<p> National Instruments measurement systems are based on the idea of combining functional testing technologies of the most widely used wireless standards in one measurement platform. The use of PCI Express bus, multi-core processors, as well as large RAID arrays makes National Instruments radio measuring systems one of the most high-performance in the world.</p>
<p> </p>
<p>RF signal generators</p>
<p> PXI RF signal generators generate modulated RF signals up to 40 GHz and up to 200 MHz from hard disk or memory banks. Thanks to their ability to program in the LabVIEW environment, they have the unmatched functionality and flexibility needed to solve automation and test problems.</p>
<p> </p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/e826931dd2ad5e36e3b377890891e9b4.png" alt="" width="1920" height="1080" /></p>
<p>Characteristics</p>
<p>▪RF signal conditioning up to 20 GHz</p>
<p>▪Instantaneous bandwidth up to 1 GHz</p>
<p>▪Modulated signal conditioning AM, FM, PM, ASK, FSK, MSK, GMSK, PSK, QPSK, PAM, QAM</p>
<p>▪Up to 512 MB of internal memory</p>
<p>▪Playback and generation of signals from hard disk</p>
<p>▪Frequency agility and power with QuickSyn® technology and RF List Mode</p>
<p> </p>
<p>RF List Mode</p>
<p>▪Allows you to create a list of signal generator settings (power level, frequency, signal generation interval) for automated generation of a sequence of RF signals with different frequencies and different power levels</p>
<p>▪Fast switching between signal generation modes - less than 1 ms</p>
<p> </p>
<p> </p>',
'title_lit' => null,
'title_ukr' => null,
'sub_title_lit' => null,
'sub_title_ukr' => null,
'content_lit' => null,
'content_ukr' => null,
'service' => '',
'service_eng' => '',
'gallery' => '',
'gallery_eng' => '',
'use_cases' => false,
'disabled' => false,
'published' => true,
'ord' => '21',
'yerevan' => false,
'created' => '2021-03-21 11:07:21',
'modified' => '2021-04-07 20:03:57',
'short_content_lat' => null,
'short_content_eng' => '<p>Microwave generators</p>',
'short_content_lit' => '',
'short_content_ukr' => '',
'featured' => false
)
),
(int) 7 => array(
'Category' => array(
'id' => '70',
'type' => 'cat',
'parent_id' => '3',
'title_lat' => '',
'title_est' => null,
'sub_title_est' => null,
'content_est' => null,
'short_content_est' => null,
'slug' => ' Microwave analyzers',
'title_eng' => ' Microwave analyzers',
'image' => '6ca9849916e7c243753fa1171bf26fa8.jpeg',
'sub_title_lat' => '',
'sub_title_eng' => ' Microwave analyzers',
'content_lat' => '',
'content_eng' => '<p>RF Vector Analyzers</p>
<p> National Instruments offers PXI vector signal analyzers for RF signals up to 26.5 GHz and bandwidth up to 765 MHz. Signal analyzers are programmed in the LabVIEW environment and allow you to measure the spectral characteristics of signals, various types of modulation and signal processing.</p>
<p> </p>
<p>Characteristics</p>
<p>▪RF vector analysis up to 26.5 GHz</p>
<p>▪Instantaneous bandwidth up to 1 GHz</p>
<p>▪User-configurable spectral measurements (in-band power, peak power, adjacent channel power, etc.)</p>
<p>▪Modulated signal detection AM, FM, PM, ASK, FSK, MSK, GMSK, PSK, QPSK, PAM, QAM and modulation quality analysis</p>
<p>▪Up to 2 GB onboard memory</p>
<p>▪Record RF signals to hard disk</p>
<p> </p>
<p>RF List Mode</p>
<p>▪Allows you to create a list of signal generator settings (power level, frequency, signal generation interval) for automated generation of a sequence of RF signals with different frequencies and different power levels</p>
<p>▪Fast switching between signal generation modes - less than 1 ms</p>
<p> </p>
<p>NI vector generators are included in the register of measuring instruments of the Russian Federation. At the request of customers, it is possible to enter ready-made systems based on them into the register of measuring instruments at VNIIMS, VNIIFTRI or 32 NII MO RF</p>',
'title_lit' => null,
'title_ukr' => null,
'sub_title_lit' => null,
'sub_title_ukr' => null,
'content_lit' => null,
'content_ukr' => null,
'service' => '',
'service_eng' => '',
'gallery' => '',
'gallery_eng' => '',
'use_cases' => false,
'disabled' => false,
'published' => true,
'ord' => '22',
'yerevan' => false,
'created' => '2021-03-21 11:18:22',
'modified' => '2021-04-07 20:03:57',
'short_content_lat' => null,
'short_content_eng' => '<p>Microwave analyzers</p>',
'short_content_lit' => '',
'short_content_ukr' => '',
'featured' => false
)
),
(int) 8 => array(
'Category' => array(
'id' => '71',
'type' => 'cat',
'parent_id' => '3',
'title_lat' => '',
'title_est' => null,
'sub_title_est' => null,
'content_est' => null,
'short_content_est' => null,
'slug' => 'Vector network analyzers',
'title_eng' => 'Vector network analyzers',
'image' => '46a7c7843501e25a75be05ef5fdde9a6.png',
'sub_title_lat' => '',
'sub_title_eng' => 'Vector network analyzers',
'content_lat' => '',
'content_eng' => '<p> The PXIe-S5090 vector network analyzer provides two ports that allow you to choose between pass / reflect test patterns or full S-parameters. The PXI vector network analyzer supports automatic accuracy calibration, full vector analysis and reference plane extensions, making it an excellent solution for vector network analysis in validation and manufacturing at a low cost and size that sets it apart from a traditional instrument. These modules are conveniently integrated into test systems for highly accurate, fast RF measurements.</p>
<p> </p>
<p>Characteristics</p>
<p>▪Operating frequency range from 300 kHz to 9 GHz</p>
<p>▪Dynamic range> 120 dB</p>
<p>▪Generator power step 0.05 dB</p>
<p>▪Number of points up to 500001 Frequency</p>
<p>▪resolution 1 Hz</p>
<p>▪Power range from -45 dBm to +15 dBm</p>
<p> </p>
<p>Time Domain Analysis</p>
<p> National Instruments Vector Network Analyzers allow you to analyze the transmission / attenuation of various types of radio paths (coaxial cable or waveguide) along its entire length using the temporal analysis function. This allows you to highlight the "problem" areas for further in-depth analysis and identification of the causes of the malfunction.</p>
<p> </p>
<p>Calibration kits for VNA</p>
<p> Vector analyzers are completed with kits for manual or automatic calibration.</p>
<p> The manual calibration kit contains calibrated RF connectors, loads, short circuits. The Automatic Calibration Kit contains a special calibration device that allows automatic calibration in one connection, making all the switches inside.</p>
<p> </p>
<p> </p>',
'title_lit' => null,
'title_ukr' => null,
'sub_title_lit' => null,
'sub_title_ukr' => null,
'content_lit' => null,
'content_ukr' => null,
'service' => '',
'service_eng' => '',
'gallery' => '',
'gallery_eng' => '',
'use_cases' => false,
'disabled' => false,
'published' => true,
'ord' => '23',
'yerevan' => false,
'created' => '2021-03-21 11:25:45',
'modified' => '2021-04-07 20:03:57',
'short_content_lat' => null,
'short_content_eng' => '<p>Vector network analyzers</p>',
'short_content_lit' => '',
'short_content_ukr' => '',
'featured' => false
)
),
(int) 9 => array(
'Category' => array(
'id' => '72',
'type' => 'cat',
'parent_id' => '3',
'title_lat' => '',
'title_est' => null,
'sub_title_est' => null,
'content_est' => null,
'short_content_est' => null,
'slug' => ' Software Defined Microwave Devices',
'title_eng' => ' Software Defined Microwave Devices',
'image' => '61260e6aebf0b5c0e295d839625d3102.png',
'sub_title_lat' => '',
'sub_title_eng' => ' Software Defined Microwave Devices',
'content_lat' => '',
'content_eng' => '<p> NI VST vector transceivers are complete instrumentation based on a software-defined radio (SDR) architecture. They combine the advantages of modular measuring instruments and SDR systems.</p>
<p> The compact module implements a vector RF signal analyzer, a vector RF signal generator, digital and analog I / O lines under the control of a common powerful FPGA.</p>
<p> </p>
<ul>
<li>Vector analyzer and vector generator. </li>
<li>High-end 1 GHz RF vector signal generator for signal shaping of any complexity. Premium 200 MHz RF vector signal analyzer for spectrum, modulation and protocol analysis </li>
<li>Frequency range from 9 kHz to 6.5 GHz</li>
<li>Instant 1 GHz bandwidth</li>
<li>Noise level -165 dBm / Hz</li>
<li>Phase noise -129 dBc / Hz</li>
<li>8 digital lines (parallel) up to 50 MHz to control the test object, triggers, etc.</li>
<li>8 high-speed 12 Gb / s serial lines</li>
<li>FPGA VIRTEX-7 XC7VVX690T Control of the entire operation of the device from the hardware level. Digital signal processing, timing, decision making, restructuring of test parameters - with the speed and determinism of the FPGA</li>
<li>Channel Synchronization Support for NI T-Clock technology and use of a common local oscillator to create phase-coherent multichannel systems</li>
<li>Calibration Complete calibration of instruments. Introduced into the state register of SI </li>
<li>PXI Express Reliable form factor for high-performance automation and test systems, high-speed PCI Express bus</li>
<li>Flexibility of software-defined systems Instrument control, programming in LabVIEW, adding custom functions, using special firmware Instrument Driver FPGA Extension, or completely redefining the instrument using LabVIEW FPGA</li>
</ul>
<p> </p>
<p> NI VST vector transceivers have opened a new class of instruments - software-defined radio measuring instruments. The use of flexible software for working with modular devices is now available not only on the computer, but also at the hardware level - on the FPGA, which controls the operation of the entire device.</p>
<p> Such a structure opens up new possibilities of devices from multiple acceleration of automatic testing to the creation of intelligent hardware and software simulators of real-time radio systems.</p>',
'title_lit' => null,
'title_ukr' => null,
'sub_title_lit' => null,
'sub_title_ukr' => null,
'content_lit' => null,
'content_ukr' => null,
'service' => '',
'service_eng' => '',
'gallery' => '',
'gallery_eng' => '',
'use_cases' => false,
'disabled' => false,
'published' => true,
'ord' => '24',
'yerevan' => false,
'created' => '2021-03-21 16:14:54',
'modified' => '2021-04-07 20:03:57',
'short_content_lat' => null,
'short_content_eng' => '<p>Software Defined Microwave Devices</p>',
'short_content_lit' => '',
'short_content_ukr' => '',
'featured' => false
)
),
(int) 10 => array(
'Category' => array(
'id' => '73',
'type' => 'cat',
'parent_id' => '3',
'title_lat' => '',
'title_est' => null,
'sub_title_est' => null,
'content_est' => null,
'short_content_est' => null,
'slug' => 'Broadband vector signal carriers',
'title_eng' => 'Broadband vector signal carriers',
'image' => 'c1c2cf2fe00de4d2a8cf1057939d8634.png',
'sub_title_lat' => '',
'sub_title_eng' => 'Broadband vector signal carriers',
'content_lat' => '',
'content_eng' => '<h4><span style="font-size: 18pt;">Broadband vector signal carriers</span></h4>',
'title_lit' => null,
'title_ukr' => null,
'sub_title_lit' => null,
'sub_title_ukr' => null,
'content_lit' => null,
'content_ukr' => null,
'service' => '',
'service_eng' => '',
'gallery' => '',
'gallery_eng' => '',
'use_cases' => false,
'disabled' => false,
'published' => true,
'ord' => '25',
'yerevan' => false,
'created' => '2021-03-21 17:38:07',
'modified' => '2021-04-07 20:03:57',
'short_content_lat' => null,
'short_content_eng' => '<p>Broadband vector signal carriers</p>',
'short_content_lit' => '',
'short_content_ukr' => '',
'featured' => false
)
),
(int) 11 => array(
'Category' => array(
'id' => '74',
'type' => 'prod',
'parent_id' => '3',
'title_lat' => '',
'title_est' => null,
'sub_title_est' => null,
'content_est' => null,
'short_content_est' => null,
'slug' => 'Basic Hardware & Software configurations',
'title_eng' => 'Basic Hardware & Software configurations broadband vector signal carriers',
'image' => 'b0ce25e17b211a3c8027118d68a7fddd.png',
'sub_title_lat' => '',
'sub_title_eng' => 'Basic Hardware & Software configurations Broadband vector signal carriers',
'content_lat' => '',
'content_eng' => '<h2 class="elementor-heading-title elementor-size-default" style="margin: 0px; padding: 0px; border: 0px; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-weight: var( --e-global-typography-primary-font-weight ); font-stretch: inherit; font-size: 30px; line-height: 1.8em; font-family: var( --e-global-typography-primary-font-family ), Sans-serif; vertical-align: baseline; box-sizing: border-box;"><span style="box-sizing: border-box; vertical-align: inherit;">Basic Hardware & Software configurations </span></h2>',
'title_lit' => null,
'title_ukr' => null,
'sub_title_lit' => null,
'sub_title_ukr' => null,
'content_lit' => null,
'content_ukr' => null,
'service' => '',
'service_eng' => '',
'gallery' => '',
'gallery_eng' => '',
'use_cases' => false,
'disabled' => false,
'published' => true,
'ord' => '26',
'yerevan' => false,
'created' => '2021-03-21 17:44:48',
'modified' => '2021-04-07 20:03:57',
'short_content_lat' => null,
'short_content_eng' => '<h2 class="elementor-heading-title elementor-size-default" style="margin: 0px; padding: 0px; border: 0px; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-weight: var( --e-global-typography-primary-font-weight ); font-stretch: inherit; font-size: 30px; line-height: 1.8em; font-family: var( --e-global-typography-primary-font-family ), Sans-serif; vertical-align: baseline; box-sizing: border-box;"><span style="box-sizing: border-box; vertical-align: inherit;">Basic Hardware & Software configurations </span></h2>',
'short_content_lit' => '',
'short_content_ukr' => '',
'featured' => false
)
),
(int) 12 => array(
'Category' => array(
'id' => '77',
'type' => 'prod',
'parent_id' => '3',
'title_lat' => '',
'title_est' => null,
'sub_title_est' => null,
'content_est' => null,
'short_content_est' => null,
'slug' => 'Basic Hardware & Software configurations Microwave components',
'title_eng' => 'Basic Hardware & Software configurations Microwave components',
'image' => 'f2dd0e59f687045e50e7444c856904b2.png',
'sub_title_lat' => '',
'sub_title_eng' => 'Basic Hardware & Software configurations Microwave components',
'content_lat' => '',
'content_eng' => '<p>Basic Hardware & Software configurations Microwave components</p>',
'title_lit' => null,
'title_ukr' => null,
'sub_title_lit' => null,
'sub_title_ukr' => null,
'content_lit' => null,
'content_ukr' => null,
'service' => '',
'service_eng' => '',
'gallery' => '',
'gallery_eng' => '',
'use_cases' => false,
'disabled' => false,
'published' => true,
'ord' => '29',
'yerevan' => false,
'created' => '2021-03-21 21:44:56',
'modified' => '2021-04-07 20:03:57',
'short_content_lat' => null,
'short_content_eng' => '<p>Basic Hardware & Software configurations Microwave components</p>',
'short_content_lit' => '',
'short_content_ukr' => '',
'featured' => false
)
),
(int) 13 => array(
'Category' => array(
'id' => '78',
'type' => 'cat',
'parent_id' => '3',
'title_lat' => '',
'title_est' => null,
'sub_title_est' => null,
'content_est' => null,
'short_content_est' => null,
'slug' => 'Multifunctional complex RF-bench - 6-in-one',
'title_eng' => 'Multifunctional complex RF-bench - 6-in-one',
'image' => 'f9a40f5015ef0b5ec33699387b8e9cc8.png',
'sub_title_lat' => '',
'sub_title_eng' => 'Multifunctional complex RF-bench - 6-in-one',
'content_lat' => '',
'content_eng' => '<h3>Analyzer, generator, VNA, power meter, programmable power supply for measuring microwave signals up to 6 GHze</h3>
<p>RF Bench is a new platform for microwave signal measurement.</p>
<p> </p>
<p>RF Bench is a set of 6 instruments essential for the radio engineer, in one form factor: vector signal generator, vector signal analyzer, vector network analyzer, software-controlled power supply, power sensor and digital I / O. Having all these devices in one small and portable package allows the user to design, debug and test their radio circuits and systems right at their stand. The included software allows you to access all of these tools in one window.</p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/fe552b0f6110b818190499ce3c6a4c7c.jpeg" alt="" width="450" height="254" /></p>
<p> </p>
<p>Functionality</p>
<p>Hardware:</p>
<ul>
<li>Vector signal generator Vector signal</li>
<li>analyzer</li>
<li>Vector network analyzer</li>
<li>Power sensor</li>
<li>Software controlled power supply</li>
<li>Digital I / O</li>
</ul>
<p>Software:</p>
<ul>
<li>Signal</li>
<li>generation Single-tone signal generation Multi-tone signal</li>
<li>generation</li>
<li>Analog modulation (AM / FM / PM)</li>
<li>Signal measurement in the frequency domain</li>
<li>Measurement signal in the time domain</li>
<li>Amplitude frequency response</li>
<li>S - parameters</li>
<li>DUT control</li>
<li>via digital I / O</li>
<li>Power measurement</li>
</ul>
<p>Key features</p>
<p>Hardware:</p>
<ul>
<li>Six devices combined in one system</li>
</ul>
<p>Software:</p>
<ul>
<li>Intuitive graphical user interface</li>
</ul>
<p> </p>
<p> </p>
<p>Specifications</p>
<p>Vector signal generator </p>
<p> </p>
<p>Frequency range 70 MHz to 6 GHz</p>
<p>Frequency step <1 kHz</p>
<p>Maximum output power 20 dBm</p>
<p>Gain range 90 dB</p>
<p>Instantaneous real-time bandwidth 56 MHz</p>
<p>Number of channels 2</p>
<p>Maximum I / Q rate 15 ms / s for streaming. Maximum speed 61.44 ms / s for a single burst channel. Maximum speed 30.72 ms / s for two-burst I / Q channel (channel burst)</p>
<p> </p>
<p>Vector signal analyzer</p>
<p> </p>
<p>Frequency range 70 MHz to 6 GHz</p>
<p>Frequency step <1 kHz</p>
<p>Maximum input power -15 dBm</p>
<p>Gain range 76 dB</p>
<p>Instantaneous real-time bandwidth 56 MHz</p>
<p>Number of channels 2</p>
<p> </p>
<p>Vector network analyzer</p>
<p> </p>
<p>Frequency range 500 kHz to 4 GHz</p>
<p>Number of channels 2-port fully bi-directional (measures S11, S12, S21, S22 simultaneously)</p>
<p>Dynamic range Up to 80 dB in MHz range, up to 40 dB in GHz range</p>
<p>Frequency adjustment resolution 1 Hz</p>
<p>Number of steps From 1 up to 10001</p>
<p>Output power -14 dBm at 100 MHz</p>
<p>Scan type Linear, logarithmic and listed</p>
<p> </p>
<p>Power sensor</p>
<p> </p>
<p>Frequency range 1 MHz to 6 GHz</p>
<p>Dynamic range -30 dBm to +20 dBm</p>
<p>Number of channels 1</p>
<p> </p>
<p>Source of power</p>
<p> </p>
<p>Voltage range 0 V to 50 V</p>
<p>Current range 0 A to 5 A</p>
<p>Number of channels 2</p>
<p> </p>
<p>Digital I / O</p>
<p> </p>
<p>Voltage range -0.5 V to 5.8 V</p>
<p>Number of channels 12</p>
<p> </p>',
'title_lit' => null,
'title_ukr' => null,
'sub_title_lit' => null,
'sub_title_ukr' => null,
'content_lit' => null,
'content_ukr' => null,
'service' => '',
'service_eng' => '',
'gallery' => '',
'gallery_eng' => '',
'use_cases' => false,
'disabled' => false,
'published' => true,
'ord' => '30',
'yerevan' => false,
'created' => '2021-03-21 22:14:34',
'modified' => '2021-04-07 20:03:57',
'short_content_lat' => null,
'short_content_eng' => '<p style="margin: 0px 0px 15px; padding: 0px; border: 0px; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-stretch: inherit; font-size: 18px; line-height: inherit; font-family: Roboto, sans-serif; vertical-align: baseline; box-sizing: border-box; text-align: justify;"><span style="box-sizing: border-box; vertical-align: inherit;">RF Bench is a new platform for microwave signal measurement.</span></p>
<p style="margin: 0px 0px 15px; padding: 0px; border: 0px; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-stretch: inherit; font-size: 18px; line-height: inherit; font-family: Roboto, sans-serif; vertical-align: baseline; box-sizing: border-box; text-align: justify;"><span style="box-sizing: border-box; vertical-align: inherit;"><span style="box-sizing: border-box; vertical-align: inherit;">RF Bench is a set of 6 instruments essential for the radio engineer, in one form factor: vector signal generator, vector signal analyzer, vector network analyzer, software-controlled power supply, power sensor and digital I / O. </span><span style="box-sizing: border-box; vertical-align: inherit;">Having all these devices in one small and portable package allows the user to design, debug and test their radio circuits and systems right at their stand. </span><span style="box-sizing: border-box; vertical-align: inherit;">The included software allows you to access all of these tools in one window.</span></span></p>',
'short_content_lit' => '',
'short_content_ukr' => '',
'featured' => false
)
),
(int) 14 => array(
'Category' => array(
'id' => '79',
'type' => 'cat',
'parent_id' => '3',
'title_lat' => '',
'title_est' => null,
'sub_title_est' => null,
'content_est' => null,
'short_content_est' => null,
'slug' => 'Test bench for prototyping and verification of microwave devices of the millimeter wave (5G mmWave)',
'title_eng' => 'Test bench for prototyping and verification of microwave devices of the millimeter wave (5G mmWave)',
'image' => '8e7136bdc64947ee632c3946143ebdfb.jpeg',
'sub_title_lat' => '',
'sub_title_eng' => 'Test bench for prototyping and verification of microwave devices of the millimeter wave (5G mmWave)',
'content_lat' => '',
'content_eng' => '<p> The mmWave microwave test bench gives engineers responsible for characterization and validation of 5G millimeter-wave beamforming devices very high speeds for spatial sweep of OTA in 5G millimeter-wave bands from 24 GHz to 44 GHz, reducing test time DUT from hours to minutes. </p>
<p> </p>
<p> Engineers working on the latest 5G Antenna-in-Module (AiM) and Antenna-in-a-Box (AiP) devices now have the advantage of reducing development time and meeting beamforming requirements with broader and more complex 5G NR signals. In addition, NI's faster test speed allows engineers to use denser spatial grids for finer resolution and dramatically improved measurement uncertainty. A test bench for prototyping and verification of microwave mm-range devices helps engineers create a very cost-effective and fast-response solution.</p>
<p> </p>
<p><span class="boldspan" style="font-size: 18pt; font-weight: 400;">Features of the</span></p>
<p>Rapid lab validation and characterization of phased array antennas with 5G millimeter wave beamforming</p>
<p>Measure narrowband (CW) and wideband (5G NR) signals with the same setting</p>
<p>No bulky external switches with powerful bi-directional ports</p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/f8e9cbbec4afd4804a3364070d19fe56.jpeg" alt="" width="400" height="294" /></p>
<p>The mmWave test bench allows engineers to tune spatial sweeps using a thin (dense) 3D mesh and perform RF measurements of thousands of points in space using autonomous movement. That is, as soon as the sweep begins, the positioner and mmWave VST synchronize and operate independently using trigger signals, without having to rely on software commands from the controller. Since this approach avoids the more time-consuming, software-driven execution of "action -> stop -> measure ", the results will be available in no time.</p>
<p>Consequently, validation engineers improve the resolution of beamforming measurements while reducing test time. Using the mmWave OTA Validation benchmark, engineers can create, store, or distribute detailed parametric results.</p>
<p> </p>
<p><span class="boldspan" style="font-weight: 400;">Equipment</span></p>
<p>The mmWave test bench includes:</p>
<ul>
<li>NI Millimeter Wave Vector Signal Transceiver (VST) for Generating and Measuring Broadband RF Signals</li>
<li>PXI-formatted tools for repeatable, fluid and precise motion control</li>
<li>Isolated RF Chamber for Testing Millimeter-Wave Far-Field AiP Devices in Quiet Environments</li>
<li>High gain antennas, cables, adapters and other accessories</li>
<li>MmWave OTA Validation Test software for interactive use and automation</li>
</ul>
<p> </p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/f51ae48f70d7616238ce355542c3f850.jpeg" alt="" width="450" height="198" /></p>
<p>Structural diagram of the mmWave OTA test bench</p>
<p> </p>
<p> The test bench can perform transmission and reception tests using narrowband signals, and then generate and analyze broadband new radio waves. Unlike competitive solutions, the NI approach does not require a separate VNA + VSG + VSA.</p>
<p> </p>
<p> The mmWave OTA test bench takes advantage of the newly released NI mmWave VST and the tightly synchronized PXI backplane to create a fast, affordable and ready-to-use OTA reference test system that engineers can tailor to their test needs. ... In addition, using other platform elements such as TestStand and LabVIEW, the mmWave Test Bench gives users the ability to customize their tests, create and store reports, and visualize their test results interactively.</p>
<p> </p>
<p>Measurement capabilities</p>
<p>• Total isotropic sensitivity</p>
<p>• Total radiated power</p>
<p>• Effective isotropic radiated power</p>
<p>• Effective isotropic sensitivity</p>
<p>• Partial upper hemisphere radiated power</p>
<p>• Partial isotropic upper hemisphere sensitivity</p>
<p>• Incomplete isotropic sensitivity near the horizon</p>
<p>• Partial isotropic radiated power near the horizon</p>
<p>• Intermediate channel</p>
<p> </p>
<p>Protocols </p>
<p>GSM, GPRS, EDGE, CDMA2000, CDMA 1xEVDO, CDMA 1xRTT,</p>
<p>WCDMA, HSDPA, Wi-Fi 802.11 a / b / g, BLUETOOTH 802.15.1.2,</p>
<p>PHS, TD-SCDMA, HSPA, WiMAX, GPS, DVB-H, A -GPS</p>
<p> </p>
<p>The list of compatible protocols is constantly expanding. Contact us for updated information</p>
<p> </p>
<p><span class="boldspan" style="font-weight: 400;">mmWave VST for IF-to-RF and RF-to-RF measurements</span></p>
<p> The modular architecture of the NI mmWave VST allows it to scale to accommodate the diversity and complexity of 5G mmWave devices. Using the NI VST, engineers gain fast, laboratory-scale, wide-bandwidth IF and MW signal generation and analysis for OTA testing of 5G semiconductor devices.</p>
<p> For testing RF-to-RF devices, the mmWave OTA Validation Test reference architecture places mmWave VST radio heads with powerful bi-directional ports very close to the RF connectors on the outside of the anechoic chamber. Engineers can also use the VST IF ports to interface the IF-RF TC.</p>
<p> </p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/5ea8aa69944ccdd78f219f23984c9f78.jpeg" alt="" width="600" height="291" /></p>
<p>MmWave VST architecture</p>
<p> </p>
<p>This approach creates:</p>
<ul>
<li>IF and Millimeter Wave Generation and Analysis Capabilities for Various DUTs</li>
<li>Future-ready, modular system that engineers can adapt without changing any other part of the test solution as the 5G standard evolves to include higher frequencies</li>
<li>A way of moving the millimeter-wave test ports closer to the device under test, minimizing signal loss and increasing the signal-to-noise ratio</li>
<li>A complete test solution with high data rates and signal processing at the speed of the latest multi-core processors.</li>
</ul>
<p> </p>
<p><span class="boldspan" style="font-weight: 400;">RF Isolated Anechoic Chamber</span></p>
<p> Correctly characterizing the beamforming characteristics of AiP devices requires a controlled and quiet RF environment in an anechoic chamber with high quality radio-absorbing material that minimizes reflections. In addition, to ensure repeatability of measurements, the motion system must provide a high angular resolution and each time move to an exact point in space.</p>
<p> The test bench includes a carefully selected anechoic chamber with a 2-axis (azimuth and elevation) DUT positioner at the bottom and a fixed measurement antenna at the top. This camera includes a National Instruments real-time motion controller that enables NI to use a fast, continuous motion OTA test method.</p>
<p> The distance between the positioner and the DUT allows far-field testing of 5G MW AiP devices with an antenna aperture of 5 cm or less (in accordance with 3GPP specification 38.310 for category 1 DUTs).</p>
<p> </p>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/7b68973e9a8643ff70c364054396af13.jpeg" alt="" width="450" height="189" /></p>
<p>High Isolation Millimeter Wave Anechoic Chamber</p>
<p> </p>
<p>This approach creates:</p>
<p>IF and Millimeter Wave Generation and Analysis Capabilities for Various DUTs</p>
<p>Future-ready, modular system that engineers can adapt without changing any other part of the test solution as the 5G standard evolves to include higher frequencies</p>
<p>A way of moving the millimeter-wave test ports closer to the device under test, minimizing signal loss and increasing the signal-to-noise ratio</p>
<p>A complete test solution with high data rates and signal processing at the speed of the latest multi-core processors.</p>
<p> </p>
<p><span class="boldspan" style="font-weight: 400;">Software</span></p>
<p> The MMW Prototyping and Verification Test Bench includes test software that helps engineers quickly set up extensive spatial sweeps to characterize their device's antenna patterns while they manufacture, render, store, or distribute detailed parametric results. </p>
<p> </p>
<p> Users can use the mmWave test bench software as a complete test environment for OTA validation tests. Alternatively, users can incorporate some of its components into their existing test environment, or use individual components as stand-alone utilities.</p>
<p> </p>
<p> OTA testing needs can vary greatly for different applications and DUT types. To help engineers adapt to different test situations, mmWave OTA Validation Test Software offers a modular approach that is extensible for different user needs such as custom DUT control, special sweep configurations, signal routing, etc.</p>
<p> </p>
<p> Engineers working on both manual and automated verification tests of mmWave OTA devices will benefit from the following components built with LabVIEW and TestStand:</p>
<p> </p>
<ul>
<li>MmWave OTA Test Configuration User Interface: An open source LabVIEW graphical user interface (GUI) that helps users configure the test matrix to run, including measurement parameters, sweep parameters, and connection settings</li>
<li>TestStand Template Launch Sequences: The mmWave OTA Validation Test Software installs test sequence templates that engineers can use to launch the configuration files they create using the mmWave OTA configuration UI.</li>
<li>Soft front of the mmWave OTA Test Positioner: The mmWave OTA SFP test positioner allows users to operate the positioner interactively.</li>
<li>mmWave OTA Test Visualizer: OTA Test Visualizer mmWave completes offline setup and analysis of OTA test data for antenna measurements. Engineers can use the OTA Test Visualizer mmWave to invoke various visualizations of results and analyze measurements and antenna patterns.</li>
<li>OTA measurement interface: To simplify the process of storing measurement values, importing and exporting measurement data, and interpreting measurement results using automated sequences in TestStand.</li>
<li>System Calibration Utility: NI provides RF System Calibration Assistant, a free software utility that controls RF devices, including an external RF power meter, to perform system loss calibrations on all RF equipment components in the signal path (cables, adapters, antennas, etc.) t.D.) taking into account both horizontal and vertical polarization.</li>
</ul>',
'title_lit' => null,
'title_ukr' => null,
'sub_title_lit' => null,
'sub_title_ukr' => null,
'content_lit' => null,
'content_ukr' => null,
'service' => '',
'service_eng' => '',
'gallery' => '',
'gallery_eng' => '',
'use_cases' => false,
'disabled' => false,
'published' => true,
'ord' => '31',
'yerevan' => false,
'created' => '2021-03-21 22:44:51',
'modified' => '2021-04-07 20:03:57',
'short_content_lat' => null,
'short_content_eng' => '<p> The mmWave microwave test bench gives engineers responsible for characterization and validation of 5G millimeter-wave beamforming devices very high speeds for spatial sweep of OTA in 5G millimeter-wave bands from 24 GHz to 44 GHz, reducing test time DUT from hours to minutes. </p>',
'short_content_lit' => '',
'short_content_ukr' => '',
'featured' => false
)
),
(int) 15 => array(
'Category' => array(
'id' => '81',
'type' => 'cat',
'parent_id' => '3',
'title_lat' => '',
'title_est' => null,
'sub_title_est' => null,
'content_est' => null,
'short_content_est' => null,
'slug' => 'Radio channel emulator',
'title_eng' => 'Radio channel emulator',
'image' => 'e81e2e50dc6903f7f1a51eb2fa82bb71.png',
'sub_title_lat' => '',
'sub_title_eng' => 'Radio channel emulator',
'content_lat' => '',
'content_eng' => '<h3><span style="font-family: Roboto, sans-serif; font-size: 18pt;">For R&D tasks and device prototype testing</span></h3>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"><img class="img-responsive" src="http://www.olnio.com/uploads/service/635e687fb3fbcf63b64defab775dda24.jpeg" alt="" width="1024" height="441" /><br /></span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">The radio systems created today and the scenarios for their operation are too complex to, as before, test them by measuring a dozen parameters. Developers need extensive functional testing, from the first search experiments to testing samples of radio modules and finished products. The scale and scope of such tests is unaffordable without a combination of computer modeling and automated measurements - special flexible experimental stands are needed.</span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> </span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">Radio channel emulators allow you to carry out complex experiments in the mode of software and hardware modeling (PAM) of the interaction of radio systems, - in real time and with real signals. Real radio devices are connected to the Emulator, which simulates the environment, the propagation of signals in it, as well as other devices and signals.</span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> </span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">Hardware and software modeling of radio systems</span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">Hardware and software modeling combines the advantages of real experiments with the availability and flexibility of software simulation. The key parts of the system interact through physical signals, and their logic, as well as the behavior of other parts, is modeled in powerful computers.</span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> </span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">Radio channel emulator device</span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">The basic idea is to replace the real radio air with a bundle of SDR transceivers that receive signals from real (tested) transmitters, calculate and emit response signals for receivers, taking into account the propagation of radio signals under simulated conditions. With the proper performance of the system, the full effect of the real operation of devices on the air is ensured.</span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> </span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"><img class="img-responsive" style="display: block; margin-left: auto; margin-right: auto;" src="http://www.olnio.com/uploads/service/13890b473550aae37c3371badf1001b2.jpeg" alt="" width="300" height="179" /></span></span></p>
<p style="text-align: center;"><em><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">The basic idea of a radio channel emulator:</span></span></em></p>
<p style="text-align: center;"><em><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">Radio devices exchange signals through a</span></span></em></p>
<p style="text-align: center;"><em><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">"box" in which signals are generated in</span></span></em></p>
<p style="text-align: center;"><em><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">accordance with models and scenarios</span></span></em></p>
<p style="text-align: center;"><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> </span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">Signal calculations quickly become more complex as the number of devices and channels increases, and channel models can include attenuation, multiple reflections, scattering, external systems, complex transceiver motion scenarios. Antenna patterns and system features are also taken into account.</span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">The Emulator tightly integrates SDR transceivers, processors, graphics cores and FPGAs, hardware and software for radio synchronization and control of the simulator, data buses, network equipment, data storage and additional software and hardware support.</span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">The emulator is designed to work with real devices and can include separate SDRs to simulate missing or experimental devices.</span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> <img class="img-responsive" src="http://www.olnio.com/uploads/service/f32e6e1cf0d2a017ee69bb37087e4f03.jpeg" alt="" width="1052" height="708" /></span></span></p>
<h3><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">Key Technologies of the Radio Channel Emulator</span></span></h3>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"><img class="img-responsive" style="float: left;" src="http://www.olnio.com/uploads/service/c6d88060d94f5f5ea6042b0a2cd6156b.jpeg" alt="" width="200" height="106" /><span class="boldspan" style="font-weight: 400;">Software-Defined Radio</span></span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">The USRP SDR transceivers simulate wideband random modulation radios. They are equipped with FPGAs for built-in signal processing and bi-directional streaming communication with computers.</span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> </span></span></p>
<p> </p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"><img class="img-responsive" style="float: left;" src="http://www.olnio.com/uploads/service/015cce67e79b1df0a03ca1207de3f070.jpeg" alt="" width="200" height="133" /><span class="boldspan" style="font-weight: 400;">FPGA FPGA</span></span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">hardware performance is required for real-time DSP of the physical layer of devices, including MIMO and OFDM, and for modeling the radio environment in super-computers from Xilinx FPGA clusters.</span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> </span></span></p>
<p> </p>
<p> </p>
<p><span class="boldspan" style="font-family: Roboto, sans-serif; font-weight: 400;"><span style="font-size: 15px;"><img class="img-responsive" style="float: left;" src="http://www.olnio.com/uploads/service/2a7891b1f7118c2800f392543487e6ba.jpeg" alt="" width="200" height="116" />Massive MIMO Massive MIMO</span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">support up to 1024 channels is possible thanks to tight synchronization of SDR transceivers, FPGA signal processing and application software based on the LabVIEW MIMO Application Framework.</span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> </span></span></p>
<p> </p>
<p><span class="boldspan" style="font-family: Roboto, sans-serif; font-weight: 400;"><span style="font-size: 15px;"><img class="img-responsive" style="float: left;" src="http://www.olnio.com/uploads/service/7f71478271fdf8a1cbc8bbf0ec7e353b.jpeg" alt="" width="200" height="124" />Artificial Intelligence</span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">AI solutions, including neural networks and deep learning, are evolving rapidly. Emulator systems are built on the latest IT solutions to support new algorithms.</span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> </span></span></p>
<p> </p>
<p><span class="boldspan" style="font-family: Roboto, sans-serif; font-weight: 400;"><span style="font-size: 15px;"><img class="img-responsive" style="float: left;" src="http://www.olnio.com/uploads/service/210e1249e34e07117b5276abd4ff5b9d.jpeg" alt="" width="200" height="87" />GPU Servers</span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">For model computing, the Emulator relies on standard IT servers and advanced graphics processing systems from NVIDIA. This makes it possible to simulate even very complex scenarios on a giant scale.</span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> </span></span></p>
<p> </p>
<h3><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">Massive MIMO Prototyping</span></span></h3>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">In the radio channel emulators, the capabilities of the NI MIMO Prototyping System software and hardware solution are available, designed for prototyping Massive MIMO and developing the necessary digital signal processing.</span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> </span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> <img class="img-responsive" src="http://www.olnio.com/uploads/service/3affdae3769ddff2ac0d48286c8b1486.jpeg" alt="" width="860" height="426" /></span></span></p>
<p><em><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">"The NI MIMO Prototyping System Integrated HW Platform with MIMO Application Framework took a lot of the complexity out of this development."</span></span></em></p>
<p><em><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">Paul Harris, CSN Group, Unversity of Bristol</span></span></em></p>
<p><em><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">Record Writers 145.6 bps / Hz</span></span></em></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> </span></span></p>
<p><span style="font-family: Roboto, sans-serif; font-size: 18pt;">MIMO PHY Channel Emulator</span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> <img class="img-responsive" src="http://www.olnio.com/uploads/service/bda4bc8193076490e83f4157b9310cbe.jpeg" alt="" width="326" height="460" /></span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">The Massive MIMO Prototyping System stand is aimed at researchers of Massive MIMO physical layer LTE, 5G NG, WiFi.</span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">Research topics:</span></span><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> </span></span></p>
<ul>
<li><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">High mobility applications</span></span></li>
<li><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">Reducing the complexity of algorithms</span></span></li>
<li><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">Time planning algorithms</span></span></li>
<li><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">Energy optimization</span></span></li>
<li><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">Distributed Massive MIMO</span></span></li>
<li><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">Hand-off between base stations</span></span></li>
<li><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">Use of pilots between stations</span></span></li>
<li><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">Coordination of interference</span></span></li>
<li><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">Increase in the number of users</span></span></li>
<li><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">Complex antenna geometries</span></span></li>
</ul>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> <img class="img-responsive" src="http://www.olnio.com/uploads/service/03e277724448bebd413d09d365b05e78.jpeg" alt="" width="1163" height="334" /></span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">Supported MIMO configurations from 8 to 128 antennas at the base station, up to 8 MIMO antennas per UE, or up to 22 SISO UEs simultaneously.</span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> </span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">The stand can also be used to perform student laboratory work in a number of courses on mobile communication systems.</span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> <img class="img-responsive" src="http://www.olnio.com/uploads/service/8b9051f9199c90e0295199db1c52a97c.jpeg" alt="" width="1033" height="392" /></span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> </span></span></p>
<h3><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">Channel emulator with Mesh support</span></span></h3>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> <img class="img-responsive" src="http://www.olnio.com/uploads/service/f399ea356c8ce9817ba1f4ea164931b5.jpeg" alt="" width="552" height="736" /></span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">The channel emulator for software and hardware modeling of a variety of radio devices - the microwave supercomputer - is based on broadband SDR devices combined into a single system with an open FPGA for built-in processing of radio signals. If necessary, MAC and higher levels are implemented in multi-core CPUs. For the calculations of complex 3D scenarios, powerful video cards are used, which allows you to generate the necessary parameters on the fly and do without the preparation of large amounts of IQ data and post-processing. To calculate the interaction of radio signals in real time, clusters of powerful FPGAs based on Xilinx Virtex, interconnected by multi-gigabit lines, are used. Server controllers and fiber optic network ensure minimal delays between computers and transceiver modules. This design provides full-size real-time emulation of simulated and connected devices. At the same time, the modularity and compactness of the emulator is preserved within the standard 19 ”racks.</span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> </span></span></p>
<h4><span style="font-family: Roboto, sans-serif; font-size: 12pt;">Microwave supercomputer Colosseum - Arena for SDR + AI solutions</span></h4>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">The Colosseum radio channel emulator for the DARPA Spectrum Collaboration Challenge project supports 512 channels in a Full Mesh topology to emulate the interaction of hundreds of SDR transceivers in real time.</span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> <img class="img-responsive" src="http://www.olnio.com/uploads/service/d95c90dff330dee677bb16f2d436a661.jpeg" alt="" width="500" height="284" /></span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> <img class="img-responsive" src="http://www.olnio.com/uploads/service/41cab5fe889c78fa82421efd1575fdc0.jpeg" alt="" width="500" height="288" /></span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> </span></span></p>
<p><em><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">“Previously, for a repeatable experiment on a network, all of the network equipment had to be assembled and plugged together in a lab — prohibitively expensive if you needed more than a couple of devices. With the Colosseum, large-scale tests can be carried out in a completely repeatable manner. This is a real activator for this kind of research. ”</span></span></em></p>
<p><em><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">John Chapin, DARPA Subject Matter Expert</span></span></em></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> </span></span></p>
<p><span style="font-family: Roboto, sans-serif; font-size: 18pt;">Technical characteristics of the radio channel emulator</span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">The composition and technical characteristics of the Emulator significantly depend on the specific configuration formed according to the technical requirements. For example, support for Mesh interaction requires special calculators of the "Microwave Supercomputer" option, and support for Massive MIMO requires the use of special blocks for synchronizing radio channels.</span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">The specifications shown are generic typical values and are for general information purposes only. To clarify the capabilities and obtain detailed characteristics of the system, discuss the requirements of your task with a specialist of MIR LLC.</span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> <img class="img-responsive" src="http://www.olnio.com/uploads/service/3b5c295b934fe6c4911792a8404256b0.jpeg" alt="" width="792" height="781" /></span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> </span></span></p>
<p><span class="boldspan" style="font-family: Roboto, sans-serif; font-size: 18pt; font-weight: 400;">Custom radio channel emulators</span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">A radio channel emulator is an effective tool in conducting practical research and testing of radio devices, from the first search experiments to testing finished devices.</span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> </span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">LLC "Modular Measuring Solutions" and YEA Engineering integrate and supply emulators of radio channels of varying complexity based on their own developments and products from National Instruments, Ettus Research, NVIDIA, Dell, Cisco, STC "Module" and others.</span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> </span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">We provide technical advice on the modification of systems and create systems according to the terms of reference based on domestic technologies for special tasks, our own developments.</span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;"> </span></span></p>
<p><span style="font-family: Roboto, sans-serif;"><span style="font-size: 15px;">Requirements for the number of channels, computing power, system topology are discussed individually in accordance with the tasks of the stand.</span></span></p>',
'title_lit' => null,
'title_ukr' => null,
'sub_title_lit' => null,
'sub_title_ukr' => null,
'content_lit' => null,
'content_ukr' => null,
'service' => '',
'service_eng' => '',
'gallery' => '',
'gallery_eng' => '',
'use_cases' => false,
'disabled' => false,
'published' => true,
'ord' => '32',
'yerevan' => false,
'created' => '2021-04-04 16:36:12',
'modified' => '2021-04-07 20:03:57',
'short_content_lat' => null,
'short_content_eng' => '<p>Radio channel emulators allow you to carry out complex experiments in the mode of software and hardware modeling (PAM) of the interaction of radio systems, - in real time and with real signals. Real radio devices are connected to the Emulator, which simulates the environment, the propagation of signals in it, as well as other devices and signals.</p>',
'short_content_lit' => '',
'short_content_ukr' => '',
'featured' => false
)
),
(int) 16 => array(
'Category' => array(
'id' => '80',
'type' => 'cat',
'parent_id' => '3',
'title_lat' => '',
'title_est' => null,
'sub_title_est' => null,
'content_est' => null,
'short_content_est' => null,
'slug' => 'Application programs',
'title_eng' => 'Application programs',
'image' => '95ce226b6964cf7fa03f97fcfa946499.png',
'sub_title_lat' => '',
'sub_title_eng' => 'Application programs',
'content_lat' => '',
'content_eng' => '<h2>Function Libraries for LabVIEW</h2>
<p> LabVIEW simplifies the development of applications for your radio measurement platform with a wide range of specialized graphics libraries for modulating / demodulating radio signals, spectral analysis, digital filter design, testing wireless communication protocols, simulating navigation signals, implementing digital processing algorithms on FPGAs, and more.</p>
<p> </p>
<h3>NI Modulation Toolkit</h3>
<p><img class="img-responsive" src="http://www.olnio.com/uploads/service/19033609af207eec85e82ab671581c0e.jpeg" alt="" width="202" height="151" /></p>
<ul>
<li>Measure the quality of modulated signals: Determine the amplitude of theEVM modulation error vector, BER, phase error, modulation error ratio</li>
<li>More than 100 ready-made programs with source code</li>
<li>Simulation and measurement of distortion, including: parasitic phase incursion between I and Q components, imbalance amplification of I and Q components of the signal</li>
<li>Formation of signals with standard and custom modes of modulation (AM, FM, PM, ASK, FSK, MSK, GMSK, PSK, QPSK, PAM, QAM)</li>
</ul>
<p> </p>
<h3>NI Spectral Measurements Toolkit</h3>
<ul>
<li>Standard measurement functions such as in-band and adjacent channel power</li>
<li>3D spectrogram generation</li>
<li>Optimized Fourier analysis of signals</li>
<li>I / Q decomposition for digital demodulation</li>
<li>Analog modulation and signal demodulation</li>
</ul>
<p> </p>
<h3>NI Advanced Signal Processing Toolkit</h3>
<ul>
<li>Wavelet analysis and the use of digital filter banks for recording short-term signals, eliminating noise and removing trend</li>
<li>Time-frequency analysis - tools for analyzing signals with a changing spectrum: quadratic algorithms, Gabor transform functions and dynamic filtering</li>
<li>Statistical analysis of signals: multivariate statistical algorithms, modal analysis, algorithms for spectral estimation of random signals</li>
</ul>
<h3> </h3>
<h3>NI GPS Simulation Toolkit and NI GLONASS Toolkit</h3>
<ul>
<li>Formation of a coarse positioning code in the L1, L2 bands</li>
<li>Automatic simulation of satellite signals based on almanac and ephemeris files</li>
<li>Simultaneous simulation of up to 12 satellites, control of the Doppler frequency shift</li>
<li>Formation of custom trajectories for simulating the operation of mobile devices</li>
<li>Up to 24 hours of continuous signal playback</li>
<li>Registration of the time to enter the operating mode TTFF</li>
</ul>
<p> </p>
<h3>NI Measurement Suite for Fixed & Mobile WiMAX</h3>
<ul>
<li>A set of functions for signal generation and analysis (setting the duration of frames, subframes, packets, preambles, data types in the information block, support for duplex modes with time division)</li>
<li>Modulation types: BPSK, QPSK, 16-QAM and 64-QAM</li>
<li>A set of functions for signal analysis (I / Q mismatch, orthogonality error, data sequence identification, etc.)</li>
</ul>
<p> </p>
<h3>NI WLAN Measurement Suite</h3>
<ul>
<li>DSSS speed support: 1, 2, and 5.5 CCK; 5.5 PBCC; 22 and 33 Mb / s</li>
<li>speeds Support DSSS-OFDM and OFDM: 6, 12, 18, 24, 36, and 54 Mb / s</li>
<li>Measurement apmlitudy error vector, the power (peak value, average value, the power in the band), the rise time and fall time power, carrier suppression, frequency offset, IQ gain imbalance</li>
</ul>
<p> </p>
<h3>LabVIEW Toolkit for COSPAS-SARSAT Test</h3>
<ul>
<li>Correction of frequency and phase of signals</li>
<li>Burst detection</li>
<li>BCH short code error correction (127, 106, 3) and (63, 51, 2)</li>
<li>Detection and decoding of short and long messages</li>
<li>Supports standard, custom and national protocols</li>
</ul>
<p> </p>
<h3>Frequency Hopping communications & Jamming Kit</h3>
<ul>
<li>A set of functions for the implementation and testing of radio communication channels on</li>
<li>high-speed FPGAs</li>
<li>Duplex data transmission in the frequency range from 10 MHz to 6.6 GHz</li>
<li>Editing the frame structure and changing the modulation type</li>
<li>Modulation and demodulation of signals in QPSK and DBPSK formats</li>
<li>Coding and decoding of communication channels</li>
<li>Exchange of video, audio and text information</li>
<li>Data transfer at a maximum speed of 12.5 Mb / s</li>
</ul>
<p> </p>
<h3>OFDM Modem Library with Hopping for FPGA</h3>
<ul>
<li>The toolkit turns NI FlexRIO into a universal OFDM modem</li>
<li>Signal bandwidth up to 26 MHz</li>
<li>Full duplex mode on two NI FlexRIO modules</li>
<li>Frequency tuning up to 400 hps</li>
<li>TDMA usage</li>
<li>Supports PSK and QAM modulations</li>
<li>Supports 64, 128, 256, 512, 1024 and 2048 subcarriers</li>
</ul>',
'title_lit' => null,
'title_ukr' => null,
'sub_title_lit' => null,
'sub_title_ukr' => null,
'content_lit' => null,
'content_ukr' => null,
'service' => '',
'service_eng' => '',
'gallery' => '',
'gallery_eng' => '',
'use_cases' => false,
'disabled' => false,
'published' => true,
'ord' => '33',
'yerevan' => false,
'created' => '2021-03-21 22:52:11',
'modified' => '2021-04-07 20:03:57',
'short_content_lat' => null,
'short_content_eng' => '<h2><span style="font-size: 24pt;">Function Libraries for LabVIEW</span></h2>',
'short_content_lit' => '',
'short_content_ukr' => '',
'featured' => false
)
)
)
$product = array(
'Product' => array(
'id' => '135',
'cat_id' => '0',
'title_lat' => 'RFI2216XCT',
'slug' => 'RFI2216XCT',
'title_eng' => '',
'text_lat' => '<p>RFI2216XCT Ka-Band VSAT Transceiver</p>',
'text_eng' => '',
'title_est' => null,
'text_est' => null,
'short_text_est' => null,
'short_text_lat' => '<p>RFI2216XCT Ka-Band VSAT Transceiver</p>',
'short_text_eng' => null,
'title_lit' => null,
'title_ukr' => null,
'text_lit' => null,
'text_ukr' => null,
'short_text_lit' => null,
'short_text_urk' => null,
'image' => '400a72531e25987359b50c18aca5cd58.jpeg',
'image2' => '778a54a83d374332e465cb00aa16e318.jpeg',
'features' => null,
'features_ru' => null,
'file' => null,
'file_ru' => null,
'disabled' => false,
'new' => '0',
'as_new' => false,
'ord' => '37',
'created' => '2021-03-21 21:57:09',
'modified' => '2021-04-07 20:07:12'
)
)
$menu_cat = array(
(int) 0 => array(
'Category' => array(
'slug' => 'ni_hardware_and_software',
'title_eng' => 'NI Hardware & Software'
)
),
(int) 1 => array(
'Category' => array(
'slug' => 'microwave_&_sdr_systems',
'title_eng' => 'Microwave & SDR systems'
)
),
(int) 2 => array(
'Category' => array(
'slug' => 'industrial_iot',
'title_eng' => 'Industrial IoT'
)
),
(int) 3 => array(
'Category' => array(
'slug' => 'electronics',
'title_eng' => 'Microelectronics'
)
),
(int) 4 => array(
'Category' => array(
'slug' => 'education',
'title_eng' => 'Education'
)
),
(int) 5 => array(
'Category' => array(
'slug' => 'digital_twins_&_hill',
'title_eng' => 'Digital twins & HIL'
)
)
)
$menu = array(
'id' => '8',
'title_eng' => 'Home',
'title_lat' => 'Home',
'title_lit' => 'Home Lit',
'title_ukr' => 'Home Ukr',
'title_est' => 'Home Est',
'ind_eng' => 'Products',
'ind_lat' => 'Industry Lat',
'ind_lit' => 'Industry Lit',
'ind_ukr' => 'Industry Ukr',
'ind_est' => 'Industry Est',
'serv_eng' => 'Service',
'serv_lat' => 'Service Lat',
'serv_lit' => 'Service Lit',
'serv_ukr' => 'Industry Ukr',
'serv_est' => 'Industry Est',
'about_eng' => 'About',
'about_lat' => 'About Lat',
'about_lit' => 'About Lit',
'about_ukr' => 'About Ukr',
'about_est' => 'About Est',
'cust_eng' => 'Customers',
'cust_lat' => 'Customers Lat',
'cust_lit' => 'Customers Lit',
'cust_ukr' => 'Customers Ukr',
'cust_est' => 'Customers Est',
'ind_dir_eng' => 'Industry Directions',
'ind_dir_lat' => 'Industry Directions Lat',
'ind_dir_lit' => 'Industry Directions',
'ind_dir_ukr' => 'Industry Directions',
'ind_dir_est' => '',
'partners_eng' => 'Customer List',
'partners_lat' => 'Customer List',
'partners_lit' => 'Customer List',
'partners_ukr' => 'Customer List',
'partners_est' => '',
'cust_logo_eng' => 'Some of our customers are listed below',
'cust_logo_lat' => 'Some of our customers are listed below Lat',
'cust_logo_lit' => 'Some of our customers are listed below',
'cust_logo_ukr' => 'Some of our customers are listed below',
'cust_logo_est' => '',
'cust_list_eng' => 'Customer List',
'cust_list_lat' => 'Customer List Lat',
'cust_list_lit' => 'Customer List',
'cust_list_ukr' => 'Customer List',
'cust_list_est' => '',
'request_eng' => 'Request Price',
'request_lat' => '',
'request_lit' => '',
'request_ukr' => '',
'request_est' => '',
'name_eng' => 'Full Name',
'name_lat' => '',
'name_lit' => '',
'name_ukr' => '',
'name_est' => '',
'email_eng' => 'E-mail',
'email_lat' => '',
'email_lit' => '',
'email_ukr' => '',
'email_est' => '',
'phone_eng' => 'Phone',
'phone_lat' => '',
'phone_lit' => '',
'phone_ukr' => '',
'phone_est' => '',
'mes_eng' => 'Message',
'mes_lat' => '',
'mes_lit' => '',
'mes_ukr' => '',
'mes_est' => '',
'submit_eng' => 'Submit',
'submit_lat' => '',
'submit_lit' => '',
'submit_ukr' => '',
'submit_est' => '',
'cancel_eng' => 'Cancel',
'cancel_lat' => '',
'cancel_lit' => '',
'cancel_ukr' => '',
'cancel_est' => '',
'contact_eng' => 'Contact us',
'contact_lat' => '',
'contact_lit' => 'Contact us',
'contact_ukr' => 'Contact us',
'contact_est' => '',
'address_eng' => 'Address',
'address_lat' => '',
'address_lit' => 'Address',
'address_ukr' => 'Address',
'address_est' => '',
'address2_eng' => 'Address',
'address2_lat' => '',
'address2_lit' => 'Address',
'address2_ukr' => 'Address',
'address2_est' => '',
'copy_eng' => 'Copyright',
'copy_lat' => '',
'copy_lit' => 'Copyright',
'copy_ukr' => 'Copyright',
'copy_est' => ''
)
$settings = array(
'id' => '3',
'email' => 'georgs@olnio.com',
'facebook' => '',
'instagram' => '',
'twitter' => '',
'phone' => '+371 29360595',
'languages' => '["eng"]',
'address_lat' => 'Matrozu str.14A Jurmala, Latvia',
'title' => 'SIA Olnio',
'description' => 'Olnio is a distributor and integrator of security systems',
'keywords' => 'Olnio',
'address_eng' => 'Matrozu str.14A Jurmala, Latvia',
'address_lit' => 'Matrozu str.14A Jurmala, Latvia',
'address_ukr' => 'Matrozu str.14A Jurmala, Latvia',
'address2_eng' => 'Liliju str.20 Marupe, Latvia, LV-2167',
'address2_lat' => 'Liliju str.20 Marupe, Latvia, LV-2167',
'address2_lit' => 'Liliju str.20 Marupe, Latvia, LV-2167',
'address2_ukr' => 'Liliju str.20 Marupe, Latvia, LV-2167',
'address_est' => '',
'address2_est' => '',
'image' => '0b1dd7146b6a18e75d6fbdff31d78ed4.png',
'url' => 'https://www.olnio.com',
'created' => '2015-04-04 07:04:50',
'modified' => '2024-04-29 12:03:11'
)
$lang = 'eng'
$prefix = '_eng'
$lng = '_eng'
$pLang = ''
include - APP/View/Contents/product_details.ctp, line 63
View::_evaluate() - CORE/Cake/View/View.php, line 971
View::_render() - CORE/Cake/View/View.php, line 933
View::render() - CORE/Cake/View/View.php, line 473
Controller::render() - CORE/Cake/Controller/Controller.php, line 968
Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200
Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167
[main] - APP/webroot/index.php, line 117